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1 Subject
When a decision-maker has to face uncertain future outcomes, they usually have no other choice
than resorting to stochastic optimization. In contrast to their deterministic counterparts, stochastic
optimization methods model the unknown parameters explicitly using probability distributions: as
a consequence, the decision variables become themselves random variables [20]. This approach is
widely used in energy systems to compute the operational planning under uncertainty (in future
demands or in renewable productions) [19]. If in addition the decision-maker has to manage storage
(hydro-valleys, fleet of batteries), the problem inherits a sequential nature that is usually encoded
through a dynamic, motivating the introduction of multistage stochastic optimization problems
where the decision-maker makes decisions at multiple points in time.

As soon as the decision variables are encoded as random variables, the stochastic optimization
problems becomes infinite dimensional. One has to resort to discretization methods to render it
tractable. Unfortunately the discretization is subject to the curse of dimensionality, which prohibits
an exact solution when the dimension of the uncertainties becomes large. As a consequence, one
has to find relevant approximation scheme to compute near-optimal decisions, the sampling average
approximation (SAA) being one of the most prominent method.

Once the uncertainties discretized, the problem rewrites as a mathematical program in finite
dimension, solvable using classical optimization algorithm. However, the size of the problem grows
linearly as we increase the number of samples in our discretization scheme. As such, the resulting
problem is often large-scale, pushing the solvers to their limits. For that reason, it is recommended
to exploit the structure of the problem (associated to the sampling we used before) in order to
alleviate the numerical burden and speed-up the solution method.

This thesis aims at providing methodological contributions to the development of structure-
exploiting solvers for large-scale stochastic optimization. To that goal, we will leverage the interior-
point method (IPM) [15] — known for its versatility — to exploit the structure of the problem at
the linear algebra level. The student will develop new solution algorithms based on IPM to solve
previously intractable problems in large-scale stochastic optimization. In particular, we will harness
the power offered by modern GPUs to achieve better scalability, using the modular framework
offered by the GPU-accelerated solver MadNLP [21]. The development will lead to the development
of an user-friendly package for multistage stochastic optimization, developed in Julia.

2 Scientific Project
In discrete time, every dynamical system has an inherent sequential structure. The structure can
be exploited afterwards in the solution algorithm, either at the level of the optimization (using

1



decomposition methods) or at the linear algebra level (using structured linear algebra).

2.1 Objective 1: two-stage program under ambiguity set
The two-stage stochastic program is one of the most standard stochastic optimization problem. It
assumes a sequential information structure: after an initial decision x is decided, an uncertainty
w occurs and the decision-maker adjusts their decision using a recourse y(w) depending on the
uncertainty. The decision structure is sequential:

x⇝ w ⇝ y .

Using probabilistic notations, the two-stage program is formally defined as

min
x,y

c⊤x+ E
[
q(w)⊤y

]
subject to

{
Ax = b ,

T (w)x+W (w)y = b(w) .
(1)

The two-stage problem (1) has a separable structure we can exploit in the optimization: the idea
is to aggregate the recourse problem inside a value function Q(x,w) parameterized by the first
stage variable x and the realization of the uncertainty w. Under convexity assumption, the value
function Q(·,w) can be approximated using a piecewise affine models (using a collection of cuts),
the first-stage problem minx c

⊤x+ E
[
Q(x,w)

]
being solved using a coordination algorithm to find

a global optimum (using a Benders or a bundle method [16, 7]). Alternatively, if the probability
distribution of w has a finite support, the problem (1) can be solved efficiently directly using a
structure exploiting interior-point method [12, 24, 11].

In the last decade, distributionally robust optimization (DRO) [23, 18] has become a prominent
research area. DRO is a generalization of the stochastic and robust optimization frameworks,
where the decision-maker optimizes directly over the space of probability distributions to look at
the worst-case distribution inside a given ambiguity set P. Using the DRO setting, the two-stage
program (1) rewrites as

min
x,y

max
P∈P

c⊤x+ EP
[
Q(x,w)

]
. (2)

The first part of this PhD project will be devoted to the study of efficient solution methods for (2).
Depending on the nature of the ambiguity set P, the problem (2) can be reformulated as a second-
order cone program (SOCP) or a semi-definite program (SDP), with a specific structure we can ex-
ploit in the interior-point algorithm. A more efficient algorithm would unlock the potential to solve
larger instances, improving the relevance of the DRO methodology. Using a structure-exploiting
interior-point would be a novelty considering the recent literature in the DRO community, where
only first-order (ADMM, Frank-Wolfe) and generic second-order interior-point methods (Mosek)
have been studied so far [13].

2.2 Objective 2: multistage stochastic program
The multistage stochastic program generalizes the previous two-stage program (1): this time, the
decision-maker can take decision at different time-steps, all coupled together [20]: At a given time t,
the decision-maker observes the last uncertainties w0, · · · ,wt−1 before taking a new decision ut.
The information structure writes informally:

w0 ⇝ u0 ⇝ w1 ⇝ u1 ⇝ · · ·⇝ uT−1 .

The knowledge accumulated so far is usually aggregated in a state variable xt that depends on
all the previous uncertainties w0, · · · ,wt (also known as the history). The multistage problem is
usually formulated as a stochastic optimal control problem:

min
x,u

E
[ T−1∑

t=0

ℓt(xt,ut,wt) +K(xT )
]

subject to xt+1 = ft(xt,ut,wt) ∀t = 0, · · · , T − 1

gt(xt,ut,wt) ≤ 0 p.s. ∀t = 0, · · · , T − 1.

(3)
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We aim at minimizing the operating cost ℓt(·) over a given horizon T , the time-steps being coupled
together through the dynamics ft(·). Beside, the problem considers operational constraints encoded
by the functions gt(·), to be satisfied almost surely. The solution of (3) is usually given as a sequence
of policy functions {πt}t=0,··· ,T−1 that explicit the dependence of the control w.r.t. the past history:
ut = πt(w0, · · · ,wt).

The problem (3) is generic, but is very difficult to solve in practice. There exists two main
solution methods [20]. (i) If the probability are discrete, the problem (3) can be formulated on a
scenario tree. However, the dimension blows up exponentially as we increase the number of time
steps. (ii) Alternatively, (3) can be solved using Dynamic Programming, provided the uncertainties
are stagewise independent. This time, the complexity becomes exponential in the number of states
xt. If the problem remains convex, the SDDP algorithm [3, 17] is often the method of choice to
solve (3), but the algorithm is slow to convergence and also subject to the curse of dimensionality
w.r.t. the state’s dimension.

The second part of this study will investigate the solution of Problem (3) using a variational ap-
proach, to target a solution with a stochastic version of the interior-point algorithm. The variational
approach has been applied to problems formulated on scenario-tree [22, 25, 8], but as discussed in
the paragraph before its complexity increases exponentially with the number of time-steps. Here, we
will investigate two alternative approaches. First, we will investigate a stochastic Newton algorithm
to solve (3). Assuming the uncertainties are Gaussian and linearizing locally the problem along a
given (stochastic) iterate, we obtain a linear-quadratic Gaussian (LQG) problems whose solution
is given using Riccati recursions [10]. This approach fits well the recent developments porting on
stochastic Sequential Quadratic Programming (SQP) methods [14, 6], but with limitations (the
Gaussian assumption being the strongest one). Alternatively, one can restrict the search space by
parameterizing the policies π0, · · · , πT−1 with a set of parameters with fixed dimension θ ∈ Rp (e.g.,
affine or piecewise affine policies [9, 5]). As we restrict the search space, the problem (3) becomes
easier to solve, but the sensitivities of the problem has to be evaluated. To that goal, we will
leverage recent development in automatic differentiation made in the machine learning community,
using the differentiable programming formalism [1, 2, 4].
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