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Optimizing energy flows in district
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Planning & contributions

1. Time decomposition in optimization and management

of home microgrids

• We solve the problem with the algorithm

Stochastic Dual Dynamic Programming (SDDP)

(state’s dimension = 4)

• We compare in a fair manner SDDP with a heuristic policy

and with a policy based Model Predictive Control (MPC)

2. Mixing time and spatial decomposition in large-scale optimization problems

• We apply price and resource decompositions to

multistage stochastic problem

• We solve large-scale problems (with a state dimension up to 64)

• We compare decomposition algorithms with

the reference SDDP algorithm

• We show that decomposition algorithms are faster

and more accurate than SDDP
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Time decomposition in

optimization and management of

home microgrids



We first study a single building

HOUSE 

Let {0, 1, · · · ,T − 1,T} be a discrete-time span

(here we consider a horizon T = 24h and ∆t = 15mn)

Objective

• We frame a discrete-time optimal control problem
and consider at all time t ∈ {0, 1, · · · ,T − 1}
• An uncertainty wt ∈ Wt (occuring between t − 1 and t)

• A control ut ∈ Ut (leveraging the system)

• A state xt ∈ Xt (outlining the energy stocks)

• We model the uncertainties as random variables

thus rendering the optimization problem stochastic

• We look at policies

πt : Xt → Ut

to compute decision online for all time t ∈ {0, · · · ,T − 1}
(similar approach as in [Bertsekas, 2005]-[Powell, 2014])
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We consider the following devices
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We introduce noises, controls and states

Fn
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• Uncertainties Wt =
(
Del

t ,D
hw
t

)
• Del

t , electrical demand (kW)

• Dhw
t , domestic hot water demand (kW)

• Control variables Ut =
(
FB,t ,FT ,t ,FH,t

)
• FB,t , energy exchange with the battery (kW)

• FT ,t , energy used to heat the hot water tank (kW)

• FH,t , thermal heating (kW)

• Stock variables Xt =
(
Bt ,Ht ,θ

i
t ,θ

w
t

)
• Bt , battery level (kWh)

• Ht , hot water storage (kWh)

• θi
t , inner temperature (◦C)

• θw
t , wall’s temperature (◦C)
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Looking at scenarios of demands during one day
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These scenarios are generated with StRoBE, a generator open-sourced by KU-Leuven 8/45



Discrete time state equations

We have the four state equations (all linear), describing the evolution

over time of the stocks:

Bt+1 =αB Bt + ∆T
(
ρcF+

B,t −
1

ρd
F−B,t

)
Ht+1 =αH Ht + ∆T

[
FT ,t −Dhw

t+1

]
θw
t+1 =θw

t +
∆T

cm

[
θi
t − θw

t

Ri + Rs
+

θe
t − θw

t

Rm + Re
+ γFH,t +

Ri

Ri + Rs
P int
t +

Re

Re + Rm
Pext
t

]

θi
t+1 =θi

t +
∆T

ci

[
θw
t − θi

t

Ri + Rs
+

θe
t − θi

t

Rv
+

θe
t − θi

t

Rf
+ (1− γ)FH,t +

Rs

Ri + Rs
P int
t

]

which will be denoted

Xt+1 = ft(Xt ,Ut ,Wt+1)
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Prices and temperature setpoints vary along time
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• T = 24h, ∆T = 15mn

• Electricity peak and off-peak

hours

pEt = 0.09 or 0.15 euros/kWh

• Temperature set-point

θ̄i
t = 16◦C or 20◦C
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The costs we have to pay

• Cost to import electricity from the network

pE
t ×max{0,FNE ,t+1}

where we define the recourse variable (electricity balance):

FNE ,t+1︸ ︷︷ ︸
Network

= Del
t+1︸︷︷︸

Demand

+ FB,t︸︷︷︸
Battery

+ FH,t︸︷︷︸
Heating

+ FT ,t︸︷︷︸
Tank

− Fpv,t︸︷︷︸
Solar panel

• Virtual Cost of thermal discomfort: κth( θi
t − θ̄i

t︸ ︷︷ ︸
deviation from setpoint

)
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Piecewise linear cost

which penalizes

temperature if below

given setpoint
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Instantaneous and final costs for a single house

• The instantaneous convex costs are

Lt(Xt ,Ut ,Wt+1) = pEt max{0,FNE ,t+1}︸ ︷︷ ︸
bill

+κth(θi
t − θ̄i

t)︸ ︷︷ ︸
discomfort

• We add a final linear cost

K (XT ) = −pHHT − pBBT

to avoid empty stocks at the final horizon T
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Writing the stochastic optimization problem

We now write the optimization problem

min
X,U

E

[
T−1∑
t=0

Lt(Xt ,Ut ,Wt+1) + K(XT )

]
s.t. Xt+1 = ft(Xt ,Ut ,Wt+1) , X0 = x0 (Dynamic)

x[ ≤ Xt ≤ x] (Bounds)

σ(Ut) ⊂ σ(W1, . . . ,Wt) (Non-anticipativity)

We aim at minimizing the expected value of the sum of the operational costs

We look at solution as state feedback policies πt : Xt → Ut

Ut = πt(Xt)
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Time decomposition in

optimization and management of

home microgrids

Numerical results



Model Predictive Control (MPC)

Procedure

Input

• A deterministic forecast scenario

(w t+1, · · · ,wT ) (possibly updated)

Output

• A policy πmpc
t : Xt → Ut that maps the

current state xt to a decision ut

The MPC policy πmpc
t : Xt → Ut writes, for all time t ∈ {0, · · · ,T − 1}

πmpc
t (xt) ∈ arg min

x,u

T−1∑
s=t

Ls(xs , us ,w s+1) + K(xT )

s.t. xs+1 = fs(xs , us ,w s+1)

and corresponds to solve a deterministic optimization problem
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Stochastic Dual Dynamic Programming
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Procedure [Pereira and Pinto, 1991]

Input

• A family of discrete marginal distributions

µt+1(·) =
∑S

s=1 πsδws
t+1

(·) with
∑S

s=1 πs = 1

Output

• Value functions V t : Xt → R approximating the

original Bellman functions Vt : Xt → R as a

supremum of affine functions

V t(x) = max
1≤k≤K

{
λ
k
t x + β

k
t

}
≤ Vt(x)

• A policy πsddp
t : Xt → Ut that maps the current

state xt to a decision ut

The SDDP policy πsddp : Xt → Ut writes, for all time t ∈ {0, · · · ,T − 1}

πsddp
t (xt) ∈ arg min

ut∈Ut

S∑
s=1

πs
[
Lt(xt , ut ,w

s
t+1) + V t+1

(
ft(xt , ut ,w

s
t+1)

)]
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How to assess MPC and SDDP strategies?

Optimization scenarios

- Dedicated to fit probability

laws or forecasts

- All algorithms have access to

the same set of scenarios

- Algorithms do not have

access to assessment

scenarios

Assessment scenarios

- Dedicated to assess the

performance of the different

policies

- We simulate each policy

along each assessment

scenario
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Assessment procedure
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Comparison of MPC and SDDP

We compare MPC and SDDP over 1,000 assessment scenarios

SDDP MPC Heuristic

Electricity bill (e)

Winter day 4.38 ± 0.02 4.59 ± 0.02 5.55 ± 0.02

Spring day 1.46 ± 0.01 1.45 ± 0.01 2.83 ± 0.01

Summer day 0.10 ± 0.01 0.18 ± 0.01 0.33 ± 0.02
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Figure 1: Absolute gap savings between MPC and SDDP during Summer day
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Conclusion for the single house problem

Contributions

• We begin the study by a simple example

• We have formulated a stochastic optimization problem for

domestic energy management system

• We have compared two resolution algorithms (MPC and SDDP)

• On this particular example, SDDP gives better performance

than MPC

Perspectives

• Compare SDDP with a stochastic version of MPC

(based on scenario trees)

• Extension to larger problems (curse of dimensionality): in the following!
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Mixing time and spatial

decomposition in large-scale

optimization problems



The challenge is now to be able to tackle larger problems

We now consider a peer-to-peer community,

where different buildings exchange energy

HOUSE 

HOUSE 

HOUSE 

HOUSE 

HOUSE 

HOUSE 

Objective

• We will formulate a

large scale (stochastic) optimization

problem

• We will apply decomposition

algorithm on it

• We introduce a new formalism that

generalizes the algorithm Dual

Approximate Dynamic Programming

([Girardeau, 2010][Leclère, 2014])
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Mixing time and spatial

decomposition in large-scale

optimization problems

Optimization upper and lower bounds

by decomposition



Decompose optimization problem with coupling constraints

Let, for i ∈ {1, · · · ,N}

• C i be a Hilbert space

• ui ∈ Ui be a decision variable

• J i : Ui → R be a local objective

• Θi : Ui → C i be a mapping

• S ⊂ C1 × · · · × CN be a set

We consider the following problem

V ] = inf
u1,··· ,uN

N∑
i=1

J i (ui )

s.t.
(
Θ1(u1), · · · ,ΘN(uN)

)
∈ S︸ ︷︷ ︸

coupling constraint
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Price and resource value functions provide bounds

We define for i ∈ {1, · · · ,N}

• The local price value function

V i [λi ] = min
ui

J i (ui ) +
〈
λi ,Θi (ui )

〉
, ∀λi ∈ (C i )?

• The local resource value function

V
i
[r i ] = min

ui
J i (ui ) , s.t. Θi (ui ) = r i , ∀r i ∈ C i

Theorem

For any

• admissible price λ = (λ1, · · · , λN) ∈ So =
{
λ ∈ C? |

〈
λ , r

〉
≤ 0 , ∀r ∈ S

}
• admissible resource r = (r1, · · · , rN) ∈ S

N∑
i=1

V i [λi ] ≤ V ] ≤
N∑
i=1

V
i
[r i ]
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Application to stochastic optimal control

We now consider the stochastic optimal control problem

V ]
0 (x0) = min

X,U
E
[ N∑

i=1

T−1∑
t=0

Lit(Xi
t ,U

i
t ,Wt+1) + K i (Xi

T )
]

s.t. Xi
t+1 = g i

t (Xi
t ,U

i
t ,Wt+1) , Xi

0 = x i0

σ(Ui
t) ⊂ σ(W0, · · · ,Wt)(

Θ1
t (X1

t ,U
1
t ), · · · ,ΘN

t (XN
t ,U

N
t )
)
∈ St

with

• W = (W0, · · · ,WT ) a global white noise process

• U = (Ui
0, · · · ,Ui

T−1) a local control process

• Xi = (Xi
0, · · · ,Xi

T ) a local state process

• g i
t : Xi

t × Ui
t ×Wt+1 → Xi

t+1 a local dynamics

• Lit : Xi
t × Ui

t ×Wt+1 → R a local instantaneous cost

• K i : Xi
T → R a local final cost

• Θi
t : Xi

t × Ui
t → Ci a local coupling

23/45



Obtaining bounds for the global problem

Theorem

For any

• admissible price process λ = (λ1, · · · ,λN) ∈ So

• admissible resource process R = (R1, · · · ,RN) ∈ S

N∑
i=1

V i
0[λi ](x i0) ≤ V0(x0) ≤

N∑
i=1

V
i
0[Ri ](x i0)

Price local value function

V i
0[λi ](x i

0) = min
Xi ,Ui

E
[ T−1∑

t=0

Li
t(Xi

t ,Ui
t ,Wt+1) +

〈
λ
i
t ,Θi

t(Xi
t ,Ui

t)
〉

+ K i (Xi
T )
]

s.t. Xi
t+1 = g i

t (Xi
t ,Ui

t ,Wt+1) , Xi
0 = x i

0

σ(Ui
t) ⊂ σ(W0, · · · ,Wt)

Resource local value function

V
i
0[Ri ](x i

0) = min
Xi ,Ui

E
[ T−1∑

t=0

Li
t(Xi

t ,Ui
t ,Wt+1) + K i (Xi

T )
]

s.t. Xi
t+1 = g i

t (Xi
t ,Ui

t ,Wt+1) , Xi
0 = x i

0

σ(Ui
t) ⊂ σ(W0, · · · ,Wt) , Θi

t(Xi
t ,Ui

t) = Ri
t
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Mixing price/resource and temporal decompositions

N∑
i=1

V i
0[λi ](x i0) ≤ V0(x0) ≤

N∑
i=1

V
i

0[Ri ](x i0)

Price decomposition

• Fix a deterministic price

λ = (λ1, · · · , λN) ∈ So

• Obtain V i
0[λi ](x i0) by Dynamic

Programming with local state x it

V i
t(x

i
t ) = min

uit

E
[
Lt(x

i
t , u

i
t ,Wt+1)+

〈
λ
i
t ,Θi

t(x
i
t , u

i
t)
〉

+

V i
t+1(g i

t (x i
t , u

i
t ,Wt+1)

]

• Return the value functions {V i
t}

Resource decomposition

• Fix a deterministic resource

r = (r1, · · · , rN) ∈ S

• Obtain V
i
0[r i ](x i0) by Dynamic

Programming with local state x it

V
i
t(x

i
t ) = min

uit

E
[
Lt(x

i
t , u

i
t ,Wt+1)+

V
i
t+1(g i

t (x i
t , u

i
t ,Wt+1)

]
s.t. Θi

t(x
i
t , u

i
t) = r it

• Return the value functions {V i
t}

25/45



Tightening the bounds in the inequalities

Looking at optimal coordination processes

• We look at deterministic coordination processes
to solve the subsystems locally by Dynamic Programming

• The inequalities holds if we look at optimal coordination processes

max
(λ1,··· ,λN )∈So

N∑
i=1

V i
0[λi ](x i0) ≤ V0(x0) ≤ min

(r1,··· ,rN )∈S

N∑
i=1

V
i
0[r i ](x i0)
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Deducing two control policies

Once value functions V i
t and V

i

t computed, we define

• the global price policy

πt(x
1
t , · · · , xNt ) ∈ arg min

u1
t ,··· ,uNt

E
[ N∑

i=1

Lit(x
i
t , u

i
t ,Wt+1) + V i

t+1

(
Xi
t+1

)]
s.t. Xi

t+1 = g i
t (x it , u

i
t ,Wt+1) , ∀i ∈ {1, · · · ,N}(

Θt(x
1
t , u

1
t ), · · · ,Θt(x

N
t , u

N
t )
)
∈ St

• the global resource policy

πt(x
1
t , · · · , xNt ) ∈ arg min

u1
t ,··· ,uNt

E
[ N∑

i=1

Lit(x
i
t , u

i
t ,Wt+1) + V

i
t+1

(
Xi
t+1

)]
s.t. Xi

t+1 = g i
t (x it , u

i
t ,Wt+1) , ∀i ∈ {1, · · · ,N}(

Θt(x
1
t , u

1
t ), · · · ,Θt(x

N
t , u

N
t )
)
∈ St
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Where are we heading to?

• First, we have obtained upper and lower bounds

for global optimization problems with coupling constraints

thanks to two spatial decomposition schemes

– Price decomposition

– Resource decomposition

• Second, with proper coordinating price and resource processes

we have computed the lower and upper bounds

by Dynamic Programming (temporal decomposition)

• With the upper and lower Bellman value functions,

we have deduced two online policies

• Now, we will apply these decomposition schemes

to large-scale problems
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Mixing time and spatial

decomposition in large-scale

optimization problems

Nodal decomposition of a network

optimization problem



Modeling flows between nodes

Graph G = (V, E)

Fi

Qe

• Qe
t flow through edge e,

• Fi
t flow imported at node i

Let A be the node-edge incidence matrix

At each time t ∈ {0, · · · ,T − 1},
Kirchhoff current law couples nodal

and edge flows

AQt + Ft = 0
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Writing down the local problem at node i

We aim at minimizing the nodal costs over the nodes i ∈ V

J iV(Fi ) = min
Xi ,Ui

E
[ T−1∑

t=0

Lit(Xi
t ,U

i
t ,Wt+1)︸ ︷︷ ︸

instantaneous cost

+K i (Xi
T )
]

subject to, for all t ∈ {0, · · · ,T − 1}

i) The nodal dynamics constraint (for battery and hot water tank)

Xi
t+1 = g i

t (Xi
t ,U

i
t ,Wt+1)

ii) The non-anticipativity constraint (future remains unknown)

σ(Ui
t) ⊂ σ(W0, · · · ,Wt+1)

iii) The load balance equation (production + import = demand)

∆i
t(Xi

t ,U
i
t ,F

i
t ,Wt+1) = 0
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Transportation costs are decoupled in time

At each time step t ∈ {0, · · · ,T − 1} , we define the edges cost as the

sum of the costs of flows Qe
t through the edges e of the grid

JE,t(Qt) = E
(∑

e∈E
let (Qe

t )
)
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Global optimization problem

The nodal cost JV aggregates the costs at all nodes i

JV(F) =
∑
i∈V

J iV(Fi )

and the edge cost JE aggregates the edges costs at all time t

JE(Q) =
T−1∑
t=0

JE,t(Qt)

The global optimization problem writes

V ] = min
F,Q

JV(F) + JE(Q)

s.t. AQ + F = 0
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What do we plan to do?

• We have formulated a multistage stochastic optimization problem

on a graph

• We will handle the coupling Kirchhoff constraints by

the two methods presented earlier

– Price decomposition

– Resource decomposition

• We will show the scalability of decomposition algorithms

(we solve problems with up to 48 buildings)
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Mixing time and spatial

decomposition in large-scale

optimization problems

Numerical results on urban microgrids



We consider different urban configurations

3-Nodes 6-Nodes 12-Nodes

24-Nodes 48-Nodes
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Problem settings

• One day horizon at 15mn time step: T = 96

• Weather corresponds to a sunny day in Paris (June 28th, 2015)

• We mix three kinds of buildings

1. Battery + Electrical Hot Water Tank

2. Solar Panel + Electrical Hot Water Tank

3. Electrical Hot Water Tank

and suppose that all consumers are commoners sharing their devices
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Looking for appropriate price and resource processes

We define the price function as

V [λ] = min
F,Q

JP(F) + JT (Q) +
〈
λ ,AQ + F

〉
and the resource function as

V [R] = min
F,Q

JP(F) + JT (Q)

s.t. F = AR , Q = −R

Objective

We aim to find deterministic price λ and resource sequences r
that tighten the gap

max
λ det

V [λ] ≤ V ] ≤ min
R det

V [R]
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Algorithms inventory

Nodal decomposition

• Encompass price and resource decompositions

• Resolution by Quasi-Newton (BFGS) methods

λ(k+1) = λ(k) + ρ(k)H(k)∇V (λ(k))

• BFGS iterates till no descent direction is found

• Each nodal subproblem solved by local SDDP (quickly converges)

• Oracle ∇V (λ) = E[AQ](λ) + F](λ)] estimated by Monte Carlo (Nscen = 1, 000)

Global SDDP

We use as a reference the SDDP algorithm applied globally

• Noises W1
t , · · · ,WN

t are independent node by node

(total support size is |supp(Wi
t)|N). Need to resample the support!

• Level-one cut selection algorithm (keep 100 most relevant cuts)

• Converged once gap between UB and LB is lower than 1%
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Fortunately, everything converges nicely! For Global SDDP...
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Figure 2: Global SDDP convergence (upper and lower bounds)
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...and for nodal decomposition
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Figure 3: We display the evolution along iterations of the price vector

(λ1
0, · · · , λ1

T−1) corresponding to Node 1
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Upper and lower bounds on the global problem

Graph 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

State dim. |X| 4 8 16 32 64

Global SDDP time 1’ 3’ 10’ 79’ 453’

Global SDDP LB 2.252 4.559 8.897 17.528 33.103

Price time 6’ 14’ 29’ 41’ 128’

Price LB 2.137 4.473 8.967 17.870 33.964

Resource time 3’ 7’ 22’ 49’ 91’

Resource UB 2.539 5.273 10.537 21.054 40.166

• For the 48-Nodes problem

V 0[sddp] ≤ V 0[price] ≤ V ] ≤ V 0[resource]

33.103 ≤ 33.964 ≤ V ] ≤ 40.166

• For the 48-Nodes problem, Price Decomposition is

almost 3x as fast as Global SDDP

(and parallelization is straightforward!)
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Optimal flows in simulation for 12-Nodes problem

1. We simulate Price policy over 1,000 scenarios

2. We look at flows at two moments in the day

12pm 9pm
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Policy evaluation by Monte Carlo simulation

Graph 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

SDDP policy 2.26 ± 0.006 4.71 ± 0.008 9.36 ± 0.011 18.59 ± 0.016 35.50 ± 0.023

Price policy 2.28 ± 0.006 4.64 ± 0.008 9.23 ± 0.012 18.39 ± 0.016 34.90 ± 0.023

Gap -0.9 % +1.5% +1.4% +1.1% +1.7%

Resource policy 2.29 ± 0.006 4.71 ± 0.008 9.31 ± 0.011 18.56 ± 0.016 35.03 ± 0.022

Gap -1.3 % 0.0% +0.5% +0.2% +1.2%

Price policy beats numerically Global SDDP policy and resource policy

For the 48-Nodes problem:

V ] ≤ C [price] ≤ C [resource] ≤ C [sddp]

V ] ≤ 34.90 ≤ 35.03 ≤ 35.50

We observe that

V ] ≤ C [price] ≤ V 0[resource]

V ] ≤ 34.9 ≤ 40.2
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From deterministic to Markovian processes

Extension to Markovian processes [Alais, 2013]

• We are also able to consider Markovian coordination processes

• We consider
λt = φt(Yt)

where (Y0, · · · ,YT ) is a Markovian process satisfying the dynamics

Yt+1 = ht(Yt ,Wt+1)

• We easily adapt the local DP equations to the Markovian case
with the extended state (x it , yt)

V i
t(x

i
t , y t

) = min
uit∈U

i
t

E
[
Li
t(x

i
t , u

i
t ,Wi

t+1) + φ
i
t(y t

) · Θi
t(x

i
t , u

i
t)+

V i
t+1

(
g i
t (x i

t , u
i
t ,Wi

t+1), ht(y
t
,Wt+1)

)]
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Conclusion

• We have presented two algorithms that decompose,

spatially then temporally, a global optimization problem

under coupling constraints

• On this case study, decomposition beat global SDDP

for large instances (≥ 24 nodes)

– In running time (3.5x faster for 48-Nodes)

– In precision (> 1% better)

• Can we obtain tighter bounds?

If we select properly the resource and price processes R and λ,

among Markovian ones (instead of deterministic ones)

we can obtain nodal value functions — with an extended local state
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Conclusion



Contributions & Perspectives

Contributions

• We have formulated energy management systems as

a stochastic optimization problem and compare different policies

• We have designed two decomposition algorithms to tackle large-scale problems

and applied them to damsvalleys and urban microgrids

• We have improved SDDP by allowing to compute a deterministic upper bound

(by exploiting Fenchel duality)

Perspectives

• Are decomposition algorithms as effective for problems

with stronger connections between subproblems?

• Does using Markovian resource process improve the performance

of resource decomposition?

• Is it possible to use more complicated decomposition schemes

(by prediction, operator splitting methods...)?

45/45



References

Alais, J.-C. (2013).

Risque et optimisation pour le management d’énergies.
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