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Planning & contributions

1. Time decomposition in optimization and management
of home microgrids
e We solve the problem with the algorithm
Stochastic Dual Dynamic Programming (SDDP)
(state’s dimension = 4)
e We compare in a fair manner SDDP with a heuristic policy
and with a policy based Model Predictive Control (MPC)

2. Mixing time and spatial decomposition in large-scale optimization problems
e We apply price and resource decompositions to
multistage stochastic problem
e We solve large-scale problems (with a state dimension up to 64)
e We compare decomposition algorithms with
the reference SDDP algorithm
e We show that decomposition algorithms are faster
and more accurate than SDDP
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Time decomposition in
optimization and management of

home microgrids



We first study a single building

Let {0,1,---, T —1, T} be a discrete-time span
(here we consider a horizon T = 24h and At = 15mn)

Objective
( \ e We frame a discrete-time optimal control problem
HOUSE and consider at all time t € {0,1,---, T — 1}
e An uncertainty wy € W, (occuring between t — 1 and t)
e A control u; € U (leveraging the system)
e A state x; € X; (outlining the energy stocks)
e \We model the uncertainties as random variables
\ y, thus rendering the optimization problem stochastic

e We look at policies
Tt - Xt — Ut

to compute decision online for all time t € {0,---, T — 1}
(similar approach as in [Bertsekas, 2005]-[Powell, 2014])
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We consider the following devices
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We introduce noises, controls and states

e Uncertainties W, = (DZ, D!")
o D? electrical demand (kW)
e D™, domestic hot water demand (kW)

e Control variables U, = (Fg ,,F,,Fy )
E L= e Fg ., energy exchange with the battery (kW)
§ e F,, energy used to heat the hot water tank (kW)

E]_/,'L. e Fy ;. thermal heating (kW)

W l& e Stock variables X, = (B,,H,,0!,6")
B., battery level (kWh)

H;, hot water storage (kWh)

0!, inner temperature (°C)

6y, wall's temperature (°C)
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Looking at scenarios of demands during one day
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Discrete time state equations

We have the four state equations (all linear), describing the evolution
over time of the stocks:

1 __
Bi11 =aBB; + AT(chg,t - ijB,t)

Hi 1 =onH, + AT[FT,t - D?Kl}

AT |0 —6Y 05— 6w R; ) Re
ew :GW + t t t t + F + U Pmt + Pext
e R+ R RmtRe Pt TR AR Y T Rt Rm !
i ; ; AT |6Y — 0! 0 — 9! 0¢ — 0! Rs .
1 :el + t t + t t + t t + 1 _ F + Plnt
LT g | R+ Rs Ry Rf (= Fuet g g P

which will be denoted

Xt+1 = ft(xt’ U, Wt+1)
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Prices and temperature setpoints vary along time

2o e T =24h, AT = 15mn
;Eii ) § e Electricity peak and off-peak
‘o hours

pE = 0.09 or 0.15 euros/kWh

N Temperature set-point
i - 0! =16°C or 20°C
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The costs we have to pay

e Cost to import electricity from the network
E
pe x max{0, Fng ¢11}
where we define the recourse variable (electricity balance):

Frveos1= Dfty + Fey + Fuy +Fr.— Fpo,
——— N~

~~ ~~ =~
Network Demand  Battery  Heating Tank Solar panel

e Virtual Cost of thermal discomfort: ku( 60} — 9_2 )
~——

deviation from setpoint

Rth

i Piecewise linear cost
which penalizes

: temperature if below

given setpoint
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Instantaneous and final costs for a single house

e The instantaneous convex costs are

Le(Xp Uy W, 1) = pE max{O, e (1} + en (6] — 67)

bill discomfort

e We add a final linear cost
K(X7) = _PHHT - PBBT

to avoid empty stocks at the final horizon T
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Writing the stochastic optimization problem

We now write the optimization problem

T—1
T,IIT E Z Lt(Xt7 Ut7WH~1) + K(XT)

t=0
sit. X1 = (X, U, Weya) s Xo=xo0  (Dynamic)
X’ <X < x* (Bounds)
O’(Ut) C O’(Wl, A 7Wt) (Non-anticipativity)

We aim at minimizing the expected value of the sum of the operational costs

We look at solution as state feedback policies 7 : X — Uy

U, = 71'1.*(Xt)
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Time decomposition in
optimization and management of
home microgrids

Numerical results



Model Predictive Control (MPC)

Procedure
Input

e A deterministic forecast scenario
(Wet1, -+, wr) (possibly updated)

Loaa o]

Output

e A policy ﬂi"pc : X¢ — U that maps the
current state x; to a decision u;

The MPC policy w;"pc : Xt — U writes, for all time t € {0,---, T — 1}
T=il
7P (x¢) € arg min Z Ls(xs, Us, Wsi1) + K(xT)
xu s=t

s.t. Xs41 = fs5(Xs, Us, Wsi1)

and corresponds to solve a deterministic optimization problem
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Stochastic Dual Dynamic Programming

Procedure [Pereira and Pinto, 1991]
Input
e A family of discrete marginal distributions
Hen () = T3 mbys (1) with 15, m, = 1

t

Output

e Value functions V, : X; — R approximating the
original Bellman functions V; : X; — R as a
supremum of affine functions

V()= max {xix+ B¢} < Velx)

e A policy widd” : X; — U, that maps the current

state x; to a decision u;

The SDDP policy 759 : X; — U writes, for all time t € {0,---, T — 1}
S
Widdp(xt) € arg TJIn Z s [Lt(xt7 u,wig) + Vi (ﬁ»(xt7 ut, W(,S+1))]
1S S —
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How to assess MPC and SDDP strategies?
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How to assess MPC and SDDP strategies?

Optimization scenarios
- Dedicated to fit probability

laws or forecasts

- All algorithms have access to
the same set of scenarios

- Algorithms do not have
access to assessment

scenarios

Optimizatio
scenario:
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How to assess MPC and SDDP strategies?
Optimization scenarios
- Dedicated to fit probability

laws or forecasts

- All algorithms have access to
the same set of scenarios

- Algorithms do not have
access to assessment
scenarios

Assessment scenarios

- Dedicated to assess the
performance of the different

policies

- We simulate each policy
along each assessment
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Assessment procedure

+

. ASSESSOR .

cost +=L_t(Xy, Uy, Wi1)

o
M I X1 = [(Xe, U, Wesa)

t t+1 Time
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Comparison of MPC and SDDP

We compare MPC and SDDP over 1,000 assessment scenarios

SDDP Heuristic
Electricity bill (€)
Winter day 4.38 £ 0.02 459 +0.02 5.55+ 0.02
Spring day 1.46 + 0.01 1.45 + 0.01 2.83 4+ 0.01
Summer day 0.10 + 0.01 0.18 4+ 0.01 0.33 £ 0.02
300
250
%200
; 50
0*68 -0.6 0.0

Figure 1: Absolute gap savings between MPC and SDDP during Summer day

—04 -
Absolute gap [€]

18/45



Conclusion for the single house problem

Contributions

e We begin the study by a simple example

o We have formulated a stochastic optimization problem for
domestic energy management system

e We have compared two resolution algorithms (MPC and SDDP)

e On this particular example, SDDP gives better performance
than MPC

Perspectives

e Compare SDDP with a stochastic version of MPC
(based on scenario trees)

e Extension to larger problems (curse of dimensionality): in the following!
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Mixing time and spatial
decomposition in large-scale
optimization problems




The challenge is now to be able to tackle larger problems

We now consider a peer-to-peer community,
where different buildings exchange energy

Objective

o We will formulate a
large scale (stochastic) optimization
problem

e We will apply decomposition
algorithm on it

e We introduce a new formalism that
generalizes the algorithm Dual
Approximate Dynamic Programming
([Girardeau, 2010][Leclere, 2014])
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Mixing time and spatial
decomposition in large-scale
optimization problems

Optimization upper and lower bounds
by decomposition



Decompose optimization problem with coupling constraints

Let, for i € {1,--- , N}

e C' be a Hilbert space

u' € U’ be a decision variable

e J/: U’ — R be a local objective
e O : U — C' be a mapping
ScClx---xCVN beaset

We consider the following problem

N
V= inf Ji(u')

1 N
ul,eulN £
’ i=1

st. (@Nu'), -, 0NwW) e S

coupling constraint
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Price and resource value functions provide bounds

We define for i € {1,---, N}
e The local price value function

Azﬂxq::rtm Ji(Wh)+ (N, ei(d)), YN e (C)

e The local resource value function

Vi[ri] =minJi(d'), st. ©'()=r", Vel

Theorem

For any
e admissible price A= (A1,--- , AN) e se={xecC*|(\,r) <0, Vre S}

e admissible resource r = (rl7 cee ,rN) €S

N N
DOVIN < VESS V]
i=1

i=1
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Application to stochastic optimal control

We now consider the stochastic optimal control problem
N T-1
in E[ Ly(X, Uy, W) + K’(X’T)]

Sl X’;Jrl - gt’(X;w UQ’WH»l) s XE) = X(g
o(Uy) C o(Wo, -+, W,)

with
e W= (W, --,W) a global white noise process
e U= (UE')7 e ,U"T_l) a local control process
o X/ = (Xi, -+ ,XL) alocal state process

o gl XX Ul x Weyq — Xiﬂ a local dynamics
o Li:Xi xUlx W, — R a local instantaneous cost
o Ki: X’T — R a local final cost

e OL:XixUi— Ca local coupling
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Obtaining bounds for the global problem

Theorem
For any
o admissible price process A = (A1,.-- ,AN) € §°
e admissible resource process R = (R,--- \RV) € S
N
ZVO[A] ) < Vo(xo) < >~ Vo[RI(x4)
=1\

Price local value function
VolX(0) = min, E[ D LXo U W) + (A, 84(X,
) t=0

s.t. Xr+1 =g (X, U W) s Xo=x

U(Ut) € U(WO’ T »Wt)
Resource local value function
VolRl(x) = Uy E[ D Ly(Xp, Uy, Weyy) + K'(XT)]
) t=0
s.t. Xi+1 = g:(Xi, Uithﬂ) ) Xé = X(;
a(U;) C o(W, -+, W,) , ©(X;,U))

Uy) + K'(X7)]

=R
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Mixing price/resource and temporal decompositions

> VEINI06) < Volxo) < 3 VolR ()

i=1

Price decomposition

e Fix a deterministic price
A:(A17"' 7)‘N)€So

e Obtain VA[N](x}) by Dynamic
Programming with local state X{:

V4(x) = min E[Le(x, u;, Wiyy)+

U
(Xt ©4(xg, ug))+
MIH»I (gt’(xt,’ ”’ta Wt+1)}

o Return the value functions {V/}

i=1

Resource decomposition

e Fix a deterministic resource
r=(t,---,rMes

e Obtain Vé[r"](x(’;) by Dynamic
Programming with local state x]

V;(Xi) = min ]E[Lt(xtf, ug, W, )+

t
Ut
8 o Bn A
[ CACHTR )
st. Oy(x,, u) = r,
e Return the value functions {V;}

25/45



Tightening the bounds in the inequalities

Looking at optimal coordination processes
e We look at deterministic coordination processes

to solve the subsystems locally by Dynamic Programming
e The inequalities holds if we look at optimal coordination processes

N N '
ma ViINT(x) < V. € i Vi
o T VAN S Voo < | min S SVl )(x)
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Deducing two control policies

Once value functions V' and V, computed, we define

e the global price policy

N
w0, xdY) € argmin B[ ST Lk, Wep) + Vi (X))

ub,ee il T

s.t. Xfr+1 = g{:(xé’, u,’;,WHl) , Vie{l,. -

(ef(xt}7 ut})z o »ef(xth ut’fv)) S St

e the global resource policy

N .
7e(xt, -, xN) € argmin E[Z LEOds ufs Wesy) + Vi (X'f+1)]

ub,u NI

s.t. X{H»l = gt{(XLI"z ut’;th+1) ) Vi S {17 T

(et(xl}v LI%), o 7et(XL{Vv ué\l)) € St

7N}

7N}
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Where are we heading to?

e First, we have obtained upper and lower bounds
for global optimization problems with coupling constraints
thanks to two spatial decomposition schemes
— Price decomposition
— Resource decomposition

e Second, with proper coordinating price and resource processes
we have computed the lower and upper bounds
by Dynamic Programming (temporal decomposition)

e With the upper and lower Bellman value functions,
we have deduced two online policies

e Now, we will apply these decomposition schemes
to large-scale problems
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Mixing time and spatial
decomposition in large-scale
optimization problems

Nodal decomposition of a network
optimization problem



Modeling flows between nodes

Graph G = (V,€)

At each time t € {0,--- , T — 1},
Kirchhoff current law couples nodal
and edge flows

AQ, +F,=0

o Qf flow through edge e,

e Fi flow imported at node i

Let A be the node-edge incidence matrix
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Writing down the local problem at node |

We aim at minimizing the nodal costs over the nodes i € V

T-1
J(F) = min E[ 3 LiX UL W) +K(X)]
, —q ——

=0 instantaneous cost

subject to, for all t € {0,---, T — 1}

i) The nodal dynamics constraint (for battery and hot water tank)
i iryi i
Xip1 = & (X4, Ur’Wt+1)
ii) The non-anticipativity constraint (future remains unknown)
o(U;) Ca(Wy, -+ W, )
III) The load balance equation (production + import = demand)

ALX,, U, FL W, ) =0
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Transportation costs are decoupled in time

At each time step t € {0,---, T — 1} , we define the edges cost as the
sum of the costs of flows Qf through the edges e of the grid

Je(Q) =E( D 1(Q0)

ec&
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Global optimization problem

The nodal cost J), aggregates the costs at all nodes /
=Y H(F)
icv

and the edge cost Jc aggregates the edges costs at all time t

~1
,_\

Je(Q) = Js +(Q,)

t

Il
o

The global optimization problem writes
2= min Jy(F) + J(Q)

st. AQ+F =0
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What do we plan to do?

e We have formulated a multistage stochastic optimization problem
on a graph

e We will handle the coupling Kirchhoff constraints by
the two methods presented earlier

— Price decomposition
— Resource decomposition

e We will show the scalability of decomposition algorithms
(we solve problems with up to 48 buildings)
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Mixing time and spatial
decomposition in large-scale
optimization problems

Numerical results on urban microgrids



We consider different urban configurations

3-Nodes 6-Nodes 12-Nodes
24-Nodes 48-Nodes
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Problem settings

e One day horizon at 15mn time step: T = 96

e Weather corresponds to a sunny day in Paris (June 28th, 2015)

e We mix three kinds of buildings

1. Battery + Electrical Hot Water Tank
2. Solar Panel + Electrical Hot Water Tank
3. Electrical Hot Water Tank

and suppose that all consumers are commoners sharing their devices
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Looking for appropriate price and resource processes

We define the price function as

VIAl = min Jp(F) + Jr(Q) + (X, AQ +F)

and the resource function as
VI[R] = r;nl(? Jp(F) + J7(Q)
F

s. AR, Q = —
Objective
We aim to find deterministic price A and resource sequences r

that tighten the gap

max V[A] < V* < m|n VI[R]

A det
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Algorithms inventory

Nodal decomposition
e Encompass price and resource decompositions
e Resolution by Quasi-Newton (BFGS) methods
At — (K)o 00 g7 v (A (K))
e BFGS iterates till no descent direction is found

e Each nodal subproblem solved by local SDDP (quickly converges)
o Oracle VV(X) = E[AQ¥(A) + F#(X)] estimated by Monte Carlo (N%" = 1,000)

Global SDDP
We use as a reference the SDDP algorithm applied globally

e Noises W%, cee ,Wé\’ are independent node by node
(total support size is |supp(W})|V). Need to resample the support!

e Level-one cut selection algorithm (keep 100 most relevant cuts)

e Converged once gap between UB and LB is lower than 1%
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Fortunately, everything converges nicely! For Global SDDP...

m— SDDP LB
—m— SDDP UB
Confidence (95.0%)

0 50 100 150 200 250 300
Iterations

Figure 2: Global SDDP convergence (upper and lower bounds)
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...and for nodal decomposition

0.175 4

0.150

0.125 A

0.100 -

Price

0.075 A

0.050 -

0.025 A

0.000 -

5 10 15 20 25 30
Iteration

Figure 3: We display the evolution along iterations of the price vector

(XS, -+, AY_1) corresponding to Node 1
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Upper and lower bounds on the global problem

Graph | 3-Nodes 6-Nodes 12-Nodes 24-Nodes  48-Nodes
State dim. X 4 8 16 32 64
Global SDDP  time 1 3 10’ 79 453’
Global SDDP LB 2.252 4.559 8.897 17.528 33.103
Price time 6’ 14’ 29’ 41’ 128’
Price LB 2.137 4.473 8.967 17.870 33.964
Resource time 3’ 7 22’ 49’ 91’
Resource UB 2.539 5.273 10.537 21.054 40.166
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Upper and lower bounds on the global problem

Graph | 3-Nodes 6-Nodes 12-Nodes 24-Nodes  48-Nodes
State dim. X 4 8 16 32 64
Global SDDP time 1 3’ 10’ 79’ 453’
Global SDDP LB 2.252 4.559 8.897 17.528 33.103
Price time 6’ 14’ 29’ 41’ 128’
Price LB 2.137 4.473 8.967 17.870 33.964
Resource time 3’ 7 22’ 49’ 91’
Resource UB 2.539 5.273 10.537 21.054 40.166
e For the 48-Nodes problem
V[sddp] < Vglprice] < V* < Vo[resource]
33103 < 33964 < V' < 40.166
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Upper and lower bounds on the global problem

Graph | 3-Nodes 6-Nodes 12-Nodes 24-Nodes  48-Nodes
State dim. X 4 8 16 32 64
Global SDDP  time 1 3 10’ 79 453’
Global SDDP LB 2.252 4.559 8.897 17.528 33.103
Price time 6’ 14’ 29’ 41’ 128’
Price LB 2.137 4.473 8.967 17.870 33.964
Resource time 3’ 7 22’ 49’ 91’
Resource UB 2.539 5.273 10.537 21.054 40.166

e For the 48-Nodes problem

v
vi

Vylsddp] < V,lprice]

< Vo[resource]
33.103 < 33.964

<
< 40.166

<
<

e For the 48-Nodes problem, Price Decomposition is
almost 3x as fast as Global SDDP
(and parallelization is straightforward!)
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Optimal flows in simulation for 12-Nodes problem

1. We simulate Price policy over 1,000 scenarios

2. We look at flows at two moments in the day

12pm 9pm
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Policy evaluation by Monte Carlo simulation

[ Graph [ 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes |
[ SDDP policy [ 2.26 +0.006  4.71 +- 0.008  9.36 + 0.011 _ 18.59  0.016  35.50 & 0.023 |
Price policy 228 £0.006 464+ 0008 9.23+0012 1839+ 0016 34.90 & 0.023

Gap 0.9 % F1.5% F1.4% F1.1% F1.7%
Resource policy | 2.29 £ 0.006 4.71 +0.008 9.31 +0.011  18.56 & 0.016  35.03 & 0.022
Gap -13% 0.0% +0.5% +0.2% +1.2%

Price policy beats numerically Global SDDP policy and resource policy

For the 48-Nodes problem:

v
v

<
< 34.90

C|price]

Clresource]

35.03

INIA

Cl[sddp]
35.50
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Policy evaluation by Monte Carlo simulation

[ Graph [ 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes |
[ SDDP policy [ 2.26 +0.006  4.71 +- 0.008  9.36 + 0.011 _ 18.59  0.016  35.50 & 0.023 |
Price policy 228 £0.006 464+ 0008 9.23+0012 1839+ 0016 34.90 & 0.023

Gap 0.9 % F1.5% F1.4% F1.1% F1.7%
Resource policy | 2.29 £ 0.006 4.71 +0.008 9.31 +0.011  18.56 & 0.016  35.03 & 0.022
Gap -13% 0.0% +0.5% +0.2% +1.2%

Price policy beats numerically Global SDDP policy and resource policy

For the 48-Nodes problem:

v
v

We observe that

< Clprice] < Clresource] <  Clsddp]
< 34.90 < 35.03 < 35.50
Vi < Clprice] < Vo[resource]
Vi < 349 < 40.2
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From deterministic to Markovian processes

Extension to Markovian processes [Alais, 2013]

e \We are also able to consider Markovian coordination processes

e \We consider
A= ¢t(Yt)

where (Y, - ,Y ) is a Markovian process satisfying the dynamics

Yt+1 = ht(th Wt+1)

e We easily adapt the local DP equations to the Markovian case
with the extended state (x{,yt)

Vilxsy) = min E[L, vl Wisa) + 04(y,) - O, ui)
up €Ut

Mi+1 (gt{(xti7 ”i? W£+1)7 ht(Xtv Wz+1))]
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Conclusion

e We have presented two algorithms that decompose,
spatially then temporally, a global optimization problem
under coupling constraints

e On this case study, decomposition beat global SDDP
for large instances (> 24 nodes)

— In running time (3.5x faster for 48-Nodes)
— In precision (> 1% better)

e Can we obtain tighter bounds?
If we select properly the resource and price processes R and A,
among Markovian ones (instead of deterministic ones)
we can obtain nodal value functions — with an extended local state
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Conclusion




Contributions & Perspectives

Contributions
e We have formulated energy management systems as
a stochastic optimization problem and compare different policies

e We have designed two decomposition algorithms to tackle large-scale problems
and applied them to damsvalleys and urban microgrids

e We have improved SDDP by allowing to compute a deterministic upper bound
(by exploiting Fenchel duality)

Perspectives
e Are decomposition algorithms as effective for problems
with stronger connections between subproblems?

e Does using Markovian resource process improve the performance
of resource decomposition?

e Is it possible to use more complicated decomposition schemes
(by prediction, operator splitting methods...)?
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