
GPU-accelerated optimal control
A nonlinear programming point-of-view

François Pacaud
frapac.github.io

Centre Automatique et Systèmes, Mines Paris - PSL

Guest lecture
Georgia Institute of Technology

October 17th, 2025

frapac.github.io


Who are we?

https://madsuite.org/

Z Alexis Montoison @ ANL
Z Sungho Shin @ MIT
Z Mihai Anitescu @ ANL

Outline: today we talk about GPU-accelerated optimal control
Z We leverage the GPU-accelerated optimization solver MadNLP

to solve large-scale optimal control on the GPU

2 of 38
.

https://madsuite.org/


Motivation for today’s lecture
ZNew generation of optimization solvers is under way

Figure: Go check Sungho’s talk at ScaleOpt!

ZMassive investments in robotics

Figure: NVIDIA Jetson

3 of 38
.



Outline

What am I talking about when talking about optimal control?

Primal-dual interior-point method

How to solve the Newton systems on the GPU?

Using MadNLP and ExaModels on the GPU

4 of 38
.



Applications of optimal control
Finding optimal trajectory in problems with a dynamic structure

• Trajectory planning
• Real-time optimization with model predictive control (MPC)

Figure: Trajectory flow for moving a satellite locally close to its orbit

A mature ecosystem already exists!
Classical workflow:

• Modeling with casadi
• Solving with Ipopt (or any structure exploiting solver)

5 of 38
.



Useful references

6 of 38
.



What do I mean by optimal control?
Disclaimer: We write everything in discrete time

At discrete time k, the state of the system is encoded in a vector xk ∈ Rnx .
After applying a control uk ∈ Rnu , the system evolves between k and k + 1 as

xk+1 = gk(xk , uk)

Most of the time, the dynamics gk(·) discretizes an ordinary differential equations
(e.g. using collocation)

The system is subject to the operational constraints:

hk(xk , uk) ≤ 0

Optimal control problem
Starting from x ∈ Rnx , we minimize the functional ℓk(·) over an horizon N:

min
x,u

N−1∑
k=0

ℓk(xk , uk) + ℓN(xN)

s.t. xk+1 = gk(xk , uk) , x0 = x
hk(xk , uk) ≤ 0

Let x := (x0, · · · , xN) and u := (u0, · · · , uN−1).
7 of 38

.



Introducing the nonlinear program
Many degrees-of-freedom approach

For w := (x , u), we abstract the previous dynamic program as:

min
w

f (w)

s.t. g(w) = 0 , h(w) ≤ 0 .
(NLP)

Nonlinear programming
• Problem is nonlinear nonconvex :

we are interested in finding only a local optimum solution
• Solvable using classical nonlinear solvers:

- IPM (Ipopt, Knitro, MadNLP)
- SQP (FilterSQP, SNOPT)
- Augmented-Lagrangian (LANCELOT, Algencan)

J. Nocedal, SJ. Wright. Numerical optimization. 8 of 38
.



Karush-Kuhn-Tucker (KKT) conditions
Using a slack variable s ≥ 0, NLP is equivalent to

min
w,s

f (w)

s.t. g(w) = 0 , h(w) + s = 0

s ≥ 0

(NLP)
Slack

We introduce the Lagrangian:

L(w , y , z) = f (w) + y⊤g(w) + z⊤h(w) .

KKT stationary equations
If w is a regular local solution, then there exist dual multipliers (y , z) satisfying

∇f (w) + ∇g(w)⊤y + ∇h(w)⊤z = 0
g(w) = 0
h(w) + s = 0

0 ≤ s ⊥ z ≥ 0
Complementarity conditions

Z Solving the NLP is equivalent to the solution of a system of nonsmooth nonlinear
equations

9 of 38
.



Regularity conditions: first-order
Denote the active set A(w) = {i ∈ [m] | hi (w) = 0} and the active Jacobian

J(w) =
[

∇g(w)
∇hA(w)

]
First-order constraint qualification
We say that the point w is qualified is the local geometry of the feasible can be
captured by a linearized model near w

(in math language, the tangent cone is equal to the set of linearized feasible directions)

• The Linear Independence Constraint Qualification (LICQ) holds if the active
Jacobian J(w) is full row-rank

• The Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds if
(y , z) = (0, 0) is the unique solution to the linear system{

∇g(w)⊤y + ∇h(w)⊤z = 0
zi ≥ 0 ∀i ∈ A(w)

Gauvin’s theorem (1979)
MFCQ holds if and only if the set of multipliers (y , z) satisfying KKT is bounded

J. Nocedal, SJ. Wright. Numerical optimization. 10 of 38
.



Regularity conditions: second-order
Let (w , y , z) a primal-dual point satisfying KKT. We define the critical cone:

C(w , y , z) = {d ∈ Rn | ∇gi (w)⊤d = 0 , i ∈ [me ] ,

∇hi (w)⊤d = 0 , i ∈ A(w) with zi > 0 ,

∇hi (w)⊤d ≤ 0 , i ∈ A(w) with zi = 0} .

Strict complementarity (SC) holds if zi > 0 for all i ∈ A(w).

Second-order sufficient condition (SOSC)
We say that (w , y , z) satisfies SOSC if

d⊤∇2
ww L(w , y , z)d > 0 ∀d ∈ C(w , y , z) \ {0}

Under SOSC, the problem is locally convex near w and the solution is isolated

Proposition
Suppose LICQ and SC hold. Then SOSC holds if and only if

Z⊤∇2
ww L(w , y , z)Z ≻ 0

with Z a basis of the null-space of the active Jacobian J(w).

11 of 38
.



Are optimal control problems regular?
Well... it depends

State constraints
• Pure state constraints: hk(xk) ≤ 0
• Mixed state constraints: hk(xk , uk) ≤ 0

Z Problems with active state constraints do not satisfy LICQ
(not enough degrees of freedom)

Z Problems with singular arcs do not satisfy SOSC
Example: Goddard rocket’s problem

Observation
Oftentimes, nonlinear solvers are struggling to solve optimal control instances

12 of 38
.



Outline

What am I talking about when talking about optimal control?

Primal-dual interior-point method

How to solve the Newton systems on the GPU?

Using MadNLP and ExaModels on the GPU

13 of 38
.



Interior-point method (IPM)

Rewrite the (nonsmooth) KKT system as a smooth nonlinear system

Fµ(x , s; y , z ) :=


∇f (x) + ∇g(x)⊤ y + ∇h(x)⊤ z

g(x)
h(x) + s
Sν − µe

 = 0

Homotopy, S = diag(s)

Dual variables

Primal-dual interior-point method
Solve Fµ(x , s; y , z, ν) = 0 using Newton method while driving µ → 0.

14 of 38
.



Augmented KKT system
The Newton algorithm translates to the solution of a sequence of linear systems

Denote the primal-dual variable by vk := (wk , sk , yk , zk). At iteration k,
1. Compute Newton step dk as solution of the linear system

∇Fµ(vk) dk = −Fµ(vk)

2. Update the as
vk+1 = vk + αkdk

Figure: ∇Fµ

Augmented KKT system
After (slight) reformulation, the Newton step writes as W 0 ∇g⊤ ∇h⊤

0 Σs 0 I
∇g 0 0 0
∇h I 0 0

 dw
ds
dy
dz

 = −

r1
r2
r3
r4


with W = ∇2

xx L(·), Σs = S−1diag(z)

Z This is the system solved by default in Ipopt

15 of 38
.



Generic case: sparse linear solver for nonlinear programming

= ×

Figure: Matrix factorization using a direct solver

Direct method for sparse indefinite linear systems
• Ill-conditioning of the KKT system

(= iterative solvers are often not practical)
• Direct solver requires numerical pivoting for stability

(= difficult to parallelize)

B. Tasseff, C. Coffrin, A. Wächter, C. Laird. "Exploring benefits of linear solver parallelism on modern nonlinear optimization applications.", 2019 16 of 38
.



Computing sparse factorizations

Duff-Reid factorization

A = PQ LBL⊤ Q⊤P⊤

with
• P: fill-in minimization matrix
• Q: additional pivoting for numerical stability
• L: unit lower-triangular matrix
• B: block diagonal matrix with blocks of dimension 1 × 1 or 2 × 2

Z The LBL factorization has become competitive only in the 1990s, using a
technique known as matching-based preprocessing

Z The progress in sparse linear solvers has directly benefited to nonlinear
optimization solvers such as Ipopt or Knitro

Z Numerical pivoting Q impairs the parallelism in the algorithm

I. Duff, J. Koster. (2001). "On algorithms for permuting large entries to the diagonal of a sparse matrix.", 2001 17 of 38
.



Condensed KKT system
We condense the linear system by removing the inequality blocks

Condensed KKT system
The augmented KKT system condenses to[

K ∇g⊤

∇g 0

] [
dw
dy

]
= −

[
r1 + (∇h)⊤(Σs r4 + r2)

r3

]
with the condensed matrix K = W + ∇h⊤ Σs ∇h.
We recover (ds , dz ) as

ds = −Σ−1
s (r3 + dy ) , dz = Σs (∇h dx − r4) − r2 .

Z Additional fill-in
Z Useful when large number of inequality constraints m

F. Pacaud, S. Shin, M. Schanen, DA. Maldonado, M. Anitescu. "Accelerating condensed interior-point methods on SIMD/GPU architectures." 2024 18 of 38
.



Condensed KKT systems in optimal control
Writing the control as a feedback on the state

Proposition
For K positive definite, the solution of the saddle-point linear system[

K G⊤

G 0

] [
w
y

]
=

[
−c

b

]
is the primal-dual solution of the convex QP

min
w

1
2

w⊤Kw + c⊤w s.t. Gw = b

For problem with a dynamic structure, the condensed KKT system yields the LQR

min
dx ,du

N−1∑
k=0

[
dx,k
du,k

]⊤ [
Kk

xx Kk
xu

Kk
ux Kk

uu

] [
dx,k
du,k

]
+

[
rx,k
ru,k

]⊤ [
dx,k
du,k

]
s.t. dx,k+1 = Gx,kdx,k + Gu,kdu,k

Z No need to use a sparse linear solver
Z Efficient solution with (backward) Riccati recursions
Z Require convexification in nonlinear programming

JC. Dunn, D. Bertsekas. "Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problems." 1989
R. Verschueren, M. Zanon, R. Quirynen, M. Diehl. "A sparsity preserving convexification procedure for indefinite quadratic programs arising in direct optimal control." 201719 of 38
.



Remember that the IPM solution is always inaccurate!
IPM is NOT an active-set method

Figure: Optimal solution of the Goddard rocket problem with nh = 100

20 of 38
.



Remember that the IPM solution is always inaccurate!
IPM is NOT an active-set method

Figure: Optimal solution of the Goddard rocket problem with nh = 100

20 of 38
.



Remember that the IPM solution is always inaccurate!
IPM is NOT an active-set method

Figure: Optimal solution of the Goddard rocket problem with nh = 100

20 of 38
.



Remember that the IPM solution is always inaccurate!
IPM is NOT an active-set method

Figure: Optimal solution of the Goddard rocket problem with nh = 100

20 of 38
.



Remember that the IPM solution is always inaccurate!
IPM is NOT an active-set method

Figure: Optimal solution of the Goddard rocket problem with nh = 1000

20 of 38
.



Outline

What am I talking about when talking about optimal control?

Primal-dual interior-point method

How to solve the Newton systems on the GPU?

Using MadNLP and ExaModels on the GPU

21 of 38
.



Why is it challenging?

Current status
Z Implementing a sparse linear solver on the GPU is highly non-trivial
Z Before the release of NVIDIA cuDSS, there was no efficient sparse linear solver

available on the GPU
Z Solving the KKT systems in IPM with an iterative solver

remains an open research question

Two solution methods for GPU-accelerated optimization method:
1. Rewrite the KKT system as a dense matrix ;
2. Use a pivoting-free factorization (at the price of sacrificing slightly the accuracy).

22 of 38
.



Reduced-space approach: densify the solution!
Few degrees of freedom

Proposition
Suppose the Jacobian ∇g is full rank. Let Z be a matrix whose columns encode a
basis of the Jacobian null-space ((∇g)Z = 0). Then the condensed KKT system is
equivalent to

Z⊤KZdu = r red

Oftentimes, the matrix Z⊤KZ is dense.

Example of null space for optimal control:

∇g =
[
Gx Gu

]
=⇒ Z =

[
−G−1

x Gu
I

]
Works best if number of control is small (e.g. PDE constrained optimization)!

D. Cole, S. Shin, F. Pacaud, VM. Zavala. "Exploiting GPU/SIMD architectures for solving linear-quadratic MPC problems." 2022
F. Pacaud, S. Shin, M. Schanen, DA. Maldonado, M. Anitescu. "Accelerating condensed interior-point methods on SIMD/GPU architectures." 2024 23 of 38
.



Full-space approach: pivoting-free sparse linear solver
Many degrees of freedom

How to avoid numerical pivoting?
Reformulate the KKT system either as
Z a positive definite (PD) system

A ≻ 0

Z a symmetric quasidefinite (SQD) system[
A B⊤

B −C

]
with A ≻ 0 , C ≻ 0

In both cases, the sparse system can be factorized using only static pivoting,
e.g. using a signed Cholesky factorization

A = PLDL⊤P⊤

with P static pivoting, L lower triangular, D diagonal matrix.

RJ. Vanderbei. "Symmetric quasidefinite matrices." 1995
A. Montoison, F. Pacaud, S. Shin, M. Anitescu. "GPU Implementation of Second-Order Linear and Nonlinear Programming Solvers." 2025 24 of 38
.



How to avoid numerical pivoting in nonlinear programming?

Objective
How to avoid numerical pivoting in the algorithm?

We look again at the condensed KKT system (sparse symmetric indefinite):[
K ∇g⊤

∇g 0

] [
dw
dy

]
= −

[
r1
r2

]
with the condensed matrix K = W + ∇h⊤ Σs ∇h.

ZThree strategies to avoid numerical pivoting:
1. LiftedKKT
2. HyKKT
3. NCL (Augmented Lagrangian)

S. Shin, F. Pacaud, M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods, arXiv:2307.16830.
S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023) 25 of 38
.



Strategy 1: LiftedKKT

Idea: equality relaxation
For a τ > 0 small enough, solve the relaxed problem

min
w∈Rn

f (w) s.t.
{

−τ ≤ g(w) ≤ τ

h(w) ≤ 0

Reformulating the problem with slack variables:

min
w∈Rn,s∈Rm

f (w) subject to hτ (w) + s = 0 , s ≥ 0

with hτ (w) = (g(w) − τ, −g(w) − τ, h(w))

Condensed KKT system
The augmented KKT system is equivalent to

Kτ dw = −r1 + (∇hτ )⊤(Σs r4 + r2)

with the condensed matrix Kτ = W + (∇hτ )⊤ Σs (∇hτ ).

→ the condensed KKT system can be solved without numerical pivoting!

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods, arXiv:2307.16830.26 of 38
.



Strategy 2: HyKKT (aka Golub & Greif method)

Idea: augmented Lagrangian reformulation
For γ > 0, the condensed KKT system is equivalent to[

Kγ ∇g⊤

∇g 0

] [
dw
dy

]
= −

[
r1 + γ∇g⊤r2

r2

]
with Kγ = K + γ∇g⊤∇g

V For γ large-enough the matrix Kγ is positive definite
Zsolve the condensed KKT system using the normal equations:

(∇g) K−1
γ (∇g)⊤dy = w2 − K−1

γ (w1 + γ∇g⊤w2)

V Keep K−1
γ implicit by solving the normal equations iteratively with a conjugate

gradient (CG) algorithm!
V For large γ, CG converges in few iterations

S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023) 27 of 38
.



Strategy 3: NCL
Augmented Lagrangian methods have always been popular in optimal control

At iteration k, the algorithm solves:

min
w,r

f (w) − (y e
k )⊤r +

ρk
2

∥r∥2

subject to g(w) + rg = 0 ,

h(w) + rh ≤ 0 ,

(NCLk)

with r = (rg , rh) regularization variables
• Subproblem (NCLk) is always feasible, solvable by IPM!
• Only the objective changes between k and k + 1
• Regularization r stabilizes internal IPM iterations

NCL algorithm ≡ Auglag algorithm
• Solve (NCLk) down to a tolerance ωk
• Update parameters as

- If ∥rk+1∥ ≤ ηk , set y e
k+1 = y e

k − ρk rk+1
- Else ρk+1 = 10 × ρk .

Algorithm NCL is more robust, but converges in more iterations than IPM.

D. Ma, KL. Judd, D. Orban and MA Saunders. "Stabilized optimization via an NCL algorithm". 28 of 38
.



Strategy 3: Stabilized KKT system
Rockafellar: Augmented Lagrangian adds a natural dual regularization to the KKT system!

For the two diagonal matrices Cg := 1
ρk

I and Ch := 1
ρk

I + Z−1S, let[
W ∇g⊤ ∇h⊤

∇g −Cg 0
∇h 0 −Ch

] [
dw
dy
dz

]
= −

[
r1
r2
r3

]
(K2r )

Observation
NCL can compute its descent direction by solving K2r .

Z For a penalty ρk high-enough, there exists a LDL factorization for K2r

Z Otherwise, use a pivot regularization strategy inside LDL to return the
factorization of a perturbed matrix

Z Recover the original descent direction using iterative refinement

A. Montoison, F. Pacaud, M. Saunders, S. Shin, D. Orban.
"MadNCL: a GPU implementation of algorithm NCL for large-scale, degenerate nonlinear programs." 2025 29 of 38
.



Outline

What am I talking about when talking about optimal control?

Primal-dual interior-point method

How to solve the Newton systems on the GPU?

Using MadNLP and ExaModels on the GPU

30 of 38
.



GPU-accelerated optimization
New solvers are blossoming everywhere

Most solvers are specialized on convex problems:
Z First-order

- cuPDLP and all affiliated variants (LP, QP)
- OSQP (QP)
- cuHALLaR / cuLORADS (low-rank SDP)

Z Second-order
- QPTH (dense QP)
- CuClarabel (conic)

MadSuite: an optimization software suite for GPUs madsuite.org

• ExaModels (NLP modeler)
• MadNLP (NLP)
• MadNCL (degenerate NLP)
• MadIPM (LP)

31 of 38
.

madsuite.org


State-of-the-art solvers for optimal control
Support for GPU-accelerated optimization is coming

Observations
State-of-the-art solvers are all exploiting the problem’s dynamic structure

Z Differential dynamic programming (Altro, ProxDDP)
Z Condensation strategy (HPIPM)
Z Riccati recursion (FATROP)

Further, the ecosystem leverages mature tools:
• BLAS library for embedded system: BLASFEO
• Efficient modeler: Casadi

Question
So, what do we gain by solving optimal control instances on the GPU?

32 of 38
.



GPU-accelerated sparse automatic differentiation with ExaModels.jl

• Large-scale optimization problems almost always have repetitive patterns

min
x♭≤x≤x♯

∑
l∈[L]

∑
i∈[Il ]

f (l)(x ; p(l)
i ) (SIMD abstraction)

subject to
[
g (m)(x ; qj )

]
j∈[Jm ]

+
∑

n∈[Nm ]

∑
k∈[Kn ]

h(n)(x ; s(n)
k ) = 0, ∀m ∈ [M]

• Repeated patterns are made available by specifying the models as iterable objects
constraint(c, 3 * x[i+1]ˆ3 + 2 * sin(x[i+2]) for i = 1:N-2)

• For each repeatitive pattern, the derivative evaluation kernel is constructed &
compiled, and executed in parallel over multiple data

ZPerfect settings for optimal control
(repeated pattern: cost and dynamics)

S. Shin, M. Anitescu, F. Pacaud. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods, arXiv:2307.16830.33 of 38
.



How fast can we get with ExaModels?

103 104

#nh

10 4

10 3

10 2

10 1

100

101

102

Ev
al

ua
tio

n 
tim

e 
(s

)

rocket

103 104

#nh

robot

103 104

#nh

pinene

101 102

#nh

dirichlet
JuMP
AMPL
ExaModels-CPU
ExaModels-GPU

Figure: Time to evaluate the derivatives (Jacobian + Hessian) on various COPS instances with a
dynamic structure

F. Pacaud, S. Shin, A. Montoison, M. Schanen, M. Anitescu. "Condensed-space methods for nonlinear programming on GPUs." 2024 34 of 38
.



Now, combining ExaModels with NVIDIA cuDSS
N.B.: here, we are not exploiting the problem’s dynamic structure

Figure: Solving the infamous distillation column instance

F. Pacaud, S. Shin. "GPU-accelerated dynamic nonlinear optimization with ExaModels and MadNLP." 2024 35 of 38
.



How expensive should be your GPU?
Observation
V No need to buy a professional GPU to get fast performance with ExaModels+cuDSS

90

100

110

120

130
GPU Architecture

CPU
Pascal
Volta
Turing
Ampere
Ada Lovelace
Hopper
Blackwell

M2 P
ro 

(20
22

)

P1
00

 (2
01

6)

P4
00

0 (
20

16
)

GV10
0 (

20
18

)

RT
X 80

00
 (2

01
8)

RT
X 20

80
 Ti 

(20
18

)

T4
 (2

01
8)

RT
X A60

00
 (2

02
0)

A10
0 (

20
20

)

RT
X 30

90
 (2

02
0)

RT
X 40

90
 (2

02
2)

RT
X 60

00
 Ad

a (
20

22
)

L40
 (2

02
2)

H10
0 (

20
22

)

H20
0 (

20
23

)

RT
X 50

90
 (2

02
4)

RT
X PR

O 60
00

 (2
02

5)
0

10

20

30

40

To
ta

l E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

Figure: Time to optimality, here for a large-scale optimal power flow instance.

Image courtesy of Sungho Shin 36 of 38
.



Next step: Solving the system in parallel
Current research effort

The KKT system is a block tridiagonal system:
A1,1 A⊤

2,1

A⊤
2,1

. . .
. . .

. . .
. . . A⊤

N,N−1
AN,N−1 AN,N




dw1
...
...

dwN

 =


r1
...
...

rN


Two different path way:
Z Parallel Cycling Reduction (PCR)
Z Partitionned Dynamic Programming

Integration is under way in MadNLP!

D. Jin, A. Montoison, S. Shin. "Harnessing Batched BLAS/LAPACK Kernels on GPUs for Parallel Solutions of Block Tridiagonal Systems." 2025 37 of 38
.



Conclusion
GPU-accelerated optimal control is currently happening!

ExaModels
Fast evaluations of derivatives in nonlinear models

frapac.github.io/tutorials/powertech/

MadNLP
Fast solution of nonlinear programs on the GPU

38 of 38
.

frapac.github.io/tutorials/powertech/

	What am I talking about when talking about optimal control?
	Primal-dual interior-point method
	How to solve the Newton systems on the GPU?
	Using MadNLP and ExaModels on the GPU

