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Who are we?

https://madsuite.org/

== Alexis Montoison @ ANL
= Sungho Shin @ MIT
== Mihai Anitescu @ ANL

Outline: today we talk about GPU-accelerated optimal control

= We leverage the GPU-accelerated optimization solver MadNLP
to solve large-scale optimal control on the GPU
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Motivation for today's lecture
=New generation of optimization solvers is under way

EEEEy | | |
ScaleOPT: GPU-AcceIe‘raTte(:fr arn
Scalable Optimization | =

y

oo

'y > 7 -
b ~ Al |
nd Al Vancement has brought
brand-new apportuniti kﬁﬁ\"[a’tianﬁg\dand
motivated novel bre: hroughsli

Figure: Go check Sungho’s talk at ScaleOpt!

wMassive investments in robotics

Nuvidia Bets Big on Robots

The chipmaker, which has led a rally in artificial intelligence stocks, laid out a vision for
dominating so-called physical A1 Investors appeared impressed.

Bowenie . S [

By n, Ravi Mattu, h Kessler, Michael J. de la Merced and L Hirsch
Jan.7,2025

Figure: NVIDIA Jetson
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Outline

What am | talking about when talking about optimal control?
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Applications of optimal control

Finding optimal trajectory in problems with a dynamic structure

® Trajectory planning

® Real-time optimization with model predictive control (MPC)

.

Figure: Trajectory flow for moving a satellite locally close to its orbit

A mature ecosystem already exists!

Classical workflow:
® Modeling with casadi

® Solving with Ipopt (or any structure exploiting solver)
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Useful references

Practical Methods for

Applied Opﬁlmﬂ Control Optimal Control Using
Nonlinear Programming

Third Edition

John T. Betts

TeE T
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What do | mean by optimal control?

Disclaimer: We write everything in discrete time

At discrete time k, the state of the system is encoded in a vector x; € R".
After applying a control u, € R", the system evolves between k and k + 1 as

Xpy1 = Bk (X, k)

Most of the time, the dynamics gk(-) discretizes an ordinary differential equations
(e.g. using collocation)

The system is subject to the operational constraints:

hi(xic, ug) <0

Optimal control problem

Starting from x € R™, we minimize the functional £,(-) over an horizon N:

N—-1

i O (X, ¢
min Z ke (Xk5 uk) + £n(xn)

k=0
st Xkt1 = 8k(Xks Uk) » X0 = X
hi(xie, ug) <0

Let x := (xo, - ,xn) and v := (ug, -+ , uy—1).
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Introducing the nonlinear program

Many degrees-of-freedom approach

For w := (x, u), we abstract the previous dynamic program as:

min f(w)
w (NLP)
s.t. g(w) =0, h(w) <O0.

Nonlinear programming

® Problem is nonlinear nonconvex :
we are interested in finding only a local optimum solution
® Solvable using classical nonlinear solvers:
- IPM (Ipopt, Knitro, MadNLP)
- SQP (FilterSQP, SNOPT)
- Augmented-Lagrangian (LANCELOT, Algencan)

J. Nocedal, SJ. Wright. Numerical optimization. 8of 38



Karush-Kuhn-Tucker (KKT) conditions

Using a slack variable s > 0, NLP is equivalent to

min f(w)
Sk
st.g(w)=0, h(w)+ s =0 (NLP)
s>0

We introduce the Lagrangian:
L(w,y,z) = f(w) +y g(w)+z" h(w).
KKT stationary equations
If w is a regular local solution, then there exist dual multipliers (y, z) satisfying

V(w)+ Veg(w) Ty +Vh(w)Tz=0

g(w)=0
h(w) +s=0
0<slz>0
4 Complementarity conditions

i Solving the NLP is equivalent to the solution of a system of nonsmooth nonlinear
equations
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Regularity conditions: first-order

Denote the active set A(w) = {i € [m] | hij(w) = 0} and the active Jacobian

9= [grecin)

First-order constraint qualification

We say that the point w is qualified is the local geometry of the feasible can be
captured by a linearized model near w

(in math language, the tangent cone is equal to the set of linearized feasible directions)

® The Linear Independence Constraint Qualification (LICQ) holds if the active

Jacobian J(w) is full row-rank
® The Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds if
(v,z) = (0,0) is the unique solution to the linear system

Ve(w) Ty +Vh(w)Tz=0
z>0 Vi€ A(w)

Gauvin's theorem (1979)
MFCQ holds if and only if the set of multipliers (y, z) satisfying KKT is bounded

J. Nocedal, SJ. Wright. Numerical optimization.
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Regularity conditions: second-order
Let (w,y,z) a primal-dual point satisfying KKT. We define the critical cone:
C(W,}/az) = {d ER" | Vg,—(W)Td =0,i¢€ [me] s
Vhi(w)Td=0, i€ A(w) with z >0,
Vhi(w)Td <0, i€ A(w) with z; = 0} .

Strict complementarity (SC) holds if z; > 0 for all i € A(w).

Second-order sufficient condition (SOSC)
We say that (w, y, z) satisfies SOSC if

d'V2, L(w,y,z)d >0 VdeC(w,y,z)\{0}

Under SOSC, the problem is locally convex near w and the solution is isolated

Proposition
Suppose LICQ and SC hold. Then SOSC holds if and only if

Z'V2,L(w,y,z)Z =0

with Z a basis of the null-space of the active Jacobian J(w).
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Are optimal control problems regular?
Well... it depends

State constraints

® Pure state constraints: hx(xx) <0
® Mixed state constraints: hy(xk, ux) < 0

= Problems with active state constraints do not satisfy LICQ
(not enough degrees of freedom)

= Problems with singular arcs do not satisfy SOSC
Example: Goddard rocket's problem

Oftentimes, nonlinear solvers are struggling to solve optimal control instances
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Outline

Primal-dual interior-point method
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Interior-point method (IPM)

Rewrite the (nonsmooth) KKT system as a smooth nonlinear system

Dual variables Vf(X) —+ Vg(x)—r y + VI'I(X)—r z
g(x)
FN(X7S; %2)3: h(X)-I—S =0
Sv — pe

Homotopy, S = diag(s)

Primal-dual interior-point method

Solve Fu(x,s;y,z,v) = 0 using Newton method while driving pn — 0.
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Augmented KKT system

The Newton algorithm translates to the solution of a sequence of linear systems

Denote the primal-dual variable by vk := (wk, sk, y¥ zK). At iteration k,

1. Compute Newton step d¥ as solution of the linear system

2. Update the as

AN

\

Figure: VF,

VFM(Vk) d* = _Fu(Vk)

VR k1 ok gk

Augmented KKT system

After (slight) reformulation, the Newton step writes as

W 0 Vg VAT dw n
0 ¥, 0 / ds | r
Vg 0 0 0 d| = |n
Vhl 0 0 dy s

with W = V2 L(.), £s = S~ diag(z)

== This is the system solved by default in Ipopt
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Generic case: sparse linear solver for nonlinear programming

AN

/,/{

Figure: Matrix factorization using a direct solver

Direct method for sparse indefinite linear systems
® |ll-conditioning of the KKT system
(= iterative solvers are often not practical)

® Direct solver requires numerical pivoting for stability
(= difficult to parallelize)

y 16 of 38
B. Tasseff, C. Coffrin, A. Wachter, C. Laird. "Exploring benefits of linear solver parallelism on modern nonlinear optimization applications.", 2019 N



Computing sparse factorizations

Duff-Reid factorization

A=PQLBLT QTPT
with
® P: fill-in minimization matrix
® Q: additional pivoting for numerical stability
® [: unit lower-triangular matrix

® B: block diagonal matrix with blocks of dimension 1 X 1 or 2 X 2

s The LBL factorization has become competitive only in the 1990s, using a
technique known as matching-based preprocessing

== The progress in sparse linear solvers has directly benefited to nonlinear
optimization solvers such as Ipopt or Knitro

= Numerical pivoting Q impairs the parallelism in the algorithm

1. Duff, J. Koster. (2001). "On algorithms for permuting large entries to the diagonal of a sparse matrix.", 2001
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Condensed KKT system

We condense the linear system by removing the inequality blocks

Condensed KKT system

The augmented KKT system condenses to

Vg 0 dy r3

K VgT] [dw] _ [rl + (V)T (Zsra + rg)]

We recover (ds, d,) as

ds=-Y;Yr+d), d=3%;(Vhdx—rs)—r.

JV with the condensed matrix K = W + Vh' ¥, Vh.
BN
X

= Additional fill-in

= Useful when large number of inequality constraints m

F. Pacaud, S. Shin, M. Schanen, DA. Maldonado, M. Anitescu. "Accelerating condensed interior-point methods on SIMD/GPU architectures." 2024 16038



Condensed KKT systems in optimal control

Writing the control as a feedback on the state

For K positive definite, the solution of the saddle-point linear system

KGT] [w] _[-c
G 0 y| | b
is the primal-dual solution of the convex QP

1
min EWTKW-‘,-CTW st. Gw=0b
w

For problem with a dynamic structure, the condensed KKT system vyields the LQR

N—-1
. d Kk Kk dx k s,k T dx k
dordy Z {du k] [Kﬁx KUJ {du,k] * [fu,k} [du,k}

s.t. dx,k+1 = Gx,kdx,k + Gu,kdu,k

== No need to use a sparse linear solver
s Efficient solution with (backward) Riccati recursions

= Require convexification in nonlinear programming

JC. Dunn, D. Bertsekas. "Efficient dynamic programming implementations of Newton's method for unconstrained optimal control problems." 1989
" f 38
R. Verschueren, M. Zanon, R. Quirynen, M. Diehl. "A sparsity preserving convexification procedure for indefinite quadratic programs arising in direct optimal Contr



Remember that the IPM solution is always inaccurate!
IPM is NOT an active-set method

tol = 0.0001

Thrust

\ \
0.00 0.05 0.10 0.15
Time [normalized]

Figure: Optimal solution of the Goddard rocket problem with nh = 100

20 of 38



Remember that the IPM solution is always inaccurate!
IPM is NOT an active-set method

Thrust

tol = 1.0e-6

0.00 0.05 0.10 0.15 0.20
Time [normalized]

Figure: Optimal solution of the Goddard rocket problem with nh = 100
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Remember that the IPM solution is always inaccurate!
IPM is NOT an active-set method

tol = 1.0e-8
3k
B2
=}
=
<
'_
1k
0 1 1

0.00 0.05 0.10 0.15 0.20
Time [normalized]

Figure: Optimal solution of the Goddard rocket problem with nh = 100
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Remember that the IPM solution is always inaccurate!
IPM is NOT an active-set method

tol = 1.0e-10
3k
B2
>
=
<
'_
1k
0 1 1 1 1 1
0.00 0.05 0.10 0.15 0.20

Time [normalized]

Figure: Optimal solution of the Goddard rocket problem with nh = 100

20 of 38



Remember that the IPM solution is always inaccurate!
IPM is NOT an active-set method

tol = 1.0e-6
tol = 1.0e-8
3| tol = 1.0e-10
tol = 1.0e-12
tol = 1.0e-14
B2
>
=
<
'_
1k
L J
or 1 1 1 1 1
0.00 0.05 0.10 0.15 0.20

Time [normalized]

Figure: Optimal solution of the Goddard rocket problem with nh = 1000
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Outline

How to solve the Newton systems on the GPU?
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Why is it challenging?

Current status

= Implementing a sparse linear solver on the GPU is highly non-trivial

== Before the release of NVIDIA cuDSS, there was no efficient sparse linear solver
available on the GPU

== Solving the KKT systems in IPM with an iterative solver
remains an open research question

Two solution methods for GPU-accelerated optimization method:
1. Rewrite the KKT system as a dense matrix ;

2. Use a pivoting-free factorization (at the price of sacrificing slightly the accuracy).
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Reduced-space approach: densify the solution!

Few degrees of freedom

Proposition

Suppose the Jacobian Vg is full rank. Let Z be a matrix whose columns encode a
basis of the Jacobian null-space ((Vg)Z = 0). Then the condensed KKT system is

equivalent to
ZTKZdy = Freq

Oftentimes, the matrix Z ' KZ is dense.

Example of null space for optimal control:

ve=[6 6] — z-= [*GXTG”}

Works best if number of control is small (e.g. PDE constrained optimization)!

D. Cole, S. Shin, F. Pacaud, VM. Zavala. "Exploiting GPU/SIMD architectures for solving linear-quadratic MPC problems." 2022
F. Pacaud, S. Shin, M. Schanen, DA. Maldonado, M. Anitescu. "Accelerating condensed interior-point methods on SIMD/GPU architectures." 2024
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Full-space approach: pivoting-free sparse linear solver

Many degrees of freedom

How to avoid numerical pivoting?

Reformulate the KKT system either as

= a positive definite (PD) system
A>0

5= a symmetric quasidefinite (SQD) system

.
[‘B‘ _BC} with A0, C»0

In both cases, the sparse system can be factorized using only static pivoting,
e.g. using a signed Cholesky factorization

A=PLDLTPT

with P static pivoting, L lower triangular, D diagonal matrix.

RJ. Vanderbei. "Symmetric quasidefinite matrices." 1995

A. Montoison, F. Pacaud, S. Shin, M. Anitescu. "GPU Implementation of Second-Order Linear and Nonlinear Programming Solvers." 2025 2ot ss



How to avoid numerical pivoting in nonlinear programming?

How to avoid numerical pivoting in the algorithm?

We look again at the condensed KKT system (sparse symmetric indefinite):

e @]
Vg 0 dy rn

with the condensed matrix K = W +Vh' ¥ Vh.

= Three strategies to avoid numerical pivoting:
1. LiftedKKT
2. HyKKT
3. NCL (Augmented Lagrangian)

S. Shin, F. Pacaud, M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of lii and I-space interior-poil

S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methcds and Software 38, no. 2 (2023)
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Strategy 1: LiftedKKT

Idea: equality relaxation

For a 7 > 0 small enough, solve the relaxed problem

ot {—r <gw)<T

min f(w) h(w) < 0

weR”?
Reformulating the problem with slack variables:

min f(w) subjectto h"(w)+s=0,s>0
wER™,sER™M

with h™(w) = (g(w) — 7, —g(w) — 7, h(w))

Condensed KKT system
The augmented KKT system is equivalent to

Ky dw=—r+ (V)T (Zsrs + r2)
with the condensed matrix K; = W + (Vh7)T ¢ (VhT).

— the condensed KKT system can be solved without numerical pivoting!

Ii . 26.0f 38
point me

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of pi and 1 I-space




Strategy 2: HyKKT (aka Golub & Greif method)

Idea: augmented Lagrangian reformulation

For v > 0, the condensed KKT system is equivalent to

Ky Vg' [dw} _ [rl +'ngTr2}
Vg 0 dy 2

with K, =K+ YVg'Vg

v For 7y large-enough the matrix K, is positive definite
iwsolve the condensed KKT system using the normal equations:

(Ve) K;' (V) Tdy =wo — K (w1 +9Vg ' w))
v Keep K,?l implicit by solving the normal equations iteratively with a conjugate

gradient (CG) algorithm!
v For large v, CG converges in few iterations

S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023)
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Strategy 3: NCL

Augmented Lagrangian methods have always been popular in optimal control

At iteration k, the algorithm solves:

min £(w) = (v§) T r + 25 lrl?
w,r
subject to  g(w)+rg =0, (NCLy)
h(w)+r, <0,

with r = (rg, rp) regularization variables
® Subproblem (NCLy) is always feasible, solvable by IPM!
® Only the objective changes between k and k + 1
® Regularization r stabilizes internal IPM iterations

NCL algorithm = Auglag algorithm

® Solve (NCLg) down to a tolerance wy

® Update parameters as
- I [l |l < mksset vy = Vi — prrks
- Else px41 =10 X py.

Algorithm NCL is more robust, but converges in more iterations than IPM.

28 of 38
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Strategy 3: Stabilized KKT system

Rockafellar: Augmented Lagrangian adds a natural dual regularization to the KKT system!

For the two diagonal matrices C, := p—lkl and G := PikIJr Z71S, let

W vgT VAT [dw n
Vg -G 0 dy| =-1r (K2r)
Vh 0 —Cul| |d. r3

NCL can compute its descent direction by solving Ka,.

= For a penalty px high-enough, there exists a LDL factorization for Kj,

== Otherwise, use a pivot regularization strategy inside LDL to return the
factorization of a perturbed matrix

= Recover the original descent direction using iterative refinement

A. Montoison, F. Pacaud, M. Saunders, S. Shin, D. Orban. 29 of 38
"MadNCL: a GPU implementation of algorithm NCL for large-scale, degenerate nonlinear programs." 2025



Outline

Using MadNLP and ExaModels on the GPU
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GPU-accelerated optimization

New solvers are blossoming everywhere

Most solvers are specialized on convex problems:
= First-order

- cuPDLP and all affiliated variants (LP, QP)

- 0SQP (QP)

- cuHALLaR / cuLORADS (low-rank SDP)
s Second-order

- QPTH (dense QP)

- CuClarabel (conic)

MadSuite: an optimization software suite for GPUs

® ExaModels (NLP modeler)
* MadNLP (NLP)
® MadNCL (degenerate NLP)

* MadIPM (LP)
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State-of-the-art solvers for optimal control

Support for GPU-accelerated optimization is coming

State-of-the-art solvers are all exploiting the problem’'s dynamic structure

w Differential dynamic programming (Altro, ProxDDP)
= Condensation strategy (HPIPM)
w Riccati recursion (FATROP)

Further, the ecosystem leverages mature tools:
® BLAS library for embedded system: BLASFEO

® Efficient modeler: Casadi

So, what do we gain by solving optimal control instances on the GPU?
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GPU-accelerated sparse automatic differentiation with ExaModels.jl

® | arge-scale optimization problems almost always have repetitive patterns

min uz Z £ (x; pfl)) (SIMD abstraction)

xP <x<x
le[L]ie[l]

subject to [g(’")(x; qj)]je[Jm] + Z Z A (x; S,En)) =0, Vme[M]
n€[Nm] k€[Kn]

® Repeated patterns are made available by specifying the models as iterable objects

constraint(c, 3 * x[i+1]°3 + 2 * sin(x[i+2]) for i = 1:N-2)

® For each repeatitive pattern, the derivative evaluation kernel is constructed &
compiled, and executed in parallel over multiple data

wwPerfect settings for optimal control
(repeated pattern: cost and dynamics)

de J.

S. Shin, M. Anitescu, F. Pacaud. Accelerating optimal power flow with GPUs: SIMD abstraction of lii programs and pace interior-point method



How fast can we get with

ExaModels?
rocket robot pinene dirichlet
—— Jump
4 AMPL

Evaluation time (s)

o

—4— ExaModels-CPU
—4— ExaModels-GPU

107 ¢ S SN
-3 1y _ _
¢7174*/*
1041 ;
10 10*

#nh

Figure: Time to evaluate the derivatives (Jacobian + Hessian) on various COPS instances with a

dynamic structure

F. Pacaud, S. Shin, A. Montoison, M. Schanen, M. Anitescu. "Condensed-space methods for nonlinear programming on GPUs." 2024
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Now, combining ExaModels with NVIDIA cuDSS

N.B.: here, we are not exploiting the problem’s dynamic structure

Solving the distillation problem - CPU vs GPU

— 1 HS5L ma2?
£ 101 { === HSLmas7
S 1 =i Lifted-KkT
E ] = HyKKT

o 107 3

= 3

= ]

a

[ 10_1 E

© E

Q E|

W ]

E 107

T T T T T T T T T T T T T
102 103 10%
Discretization size

Figure: Solving the infamous distillation column instance

i
F. Pacaud, S. Shin. "GPU-accelerated dynamic nonlinear optimization with ExaModels and MadNLP." 2024 35 of 38



How expensive should be your GPU?

v No need to buy a professional GPU to get fast performance with ExaModels+cuDSS

130
GPU Architecture
. CPU
1204 e Pascal
mm Volta
- 1104 Bl Turing
‘g B Ampere
S B Ada Lovelace
o 1004 B Hopper
o mmm Blackwell
E 90+ T T T T T T - -
=
T 407
@
I
&
o 3041
®
k<l
204
104 . 3 ® = |

Figure: Time to optimality, here for a large-scale optimal power flow instance.

Image courtesy of Sungho Shin
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Next step: Solving the system in parallel

Current research effort

The KKT system is a block tridiagonal system:

T
At Ay dw1 r
-
A1 _
-
Ann—1 :
Ann—1 AnnN dwn 'n

Two different path way:
s Parallel Cycling Reduction (PCR)

= Partitionned Dynamic Programming

Integration is under way in MadNLP!

D. Jin, A. Montoison, S. Shin. "Harnessing Batched BLAS/LAPACK Kernels on GPUs for Parallel Solutions of Block Tridiagonal Systems." 2025



Conclusion

GPU-accelerated optimal control is currently happening!

ExaModels

Fast evaluations of derivatives in nonlinear models

frapac.github.io/tutorials/powertech/

MadNLP

Fast solution of nonlinear programs on the GPU
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