Solving large-scale optimal power flow instances

Francois Pacaud
frapac.github.io

Centre Automatique et Systémes, Mines Paris - PSL

Guest lecture
Institute of Control Systems (ICS), TU Hamburg
July 10th, 2025

frapac.github.io

Contents

What have you learned before in this class?
® Lecture II: Power flow
® Lecture Ill: Optimal power flow
® Lecture IV: Stochastic OPF

What will you learn today?

Solve practical power system problems in the large-scale regime (> 10,000 buses)

What is current state-of-the-art?

® Solving an OPF with 10,000 buses takes a few seconds on a laptop
® Real challenge lies in solving efficiently OPF variants. By order of difficulties:
- Multiperiod OPF with loose time coupling
(ramping constraints for the generators, damsvalley, batteries)
- Security-constrained OPF with N — 1 security criterion
- Large-scale unit-commitment (— binary variables!)

2 0of 35

Outline

Brief historical perspectives

30of 35

A brief history

Optimal Power Flow Solutions

HERMANN W. DOMMEL, memBer, 1288, ANp WILLIAM F. TINNEY, SENIOR MEMBER, IEEE

Abstract—A practical method is given for solving the power flow
sblem with control variables such as real and reactive power and
nsformer ratios automatieally adjusted to minimize instantaneous
sts or losses. The solution is feasible with respect to constraints

this is the problem of static optimization of a scalar objective
function (also called cost function). Two cases are treaf
optimal real and reactive power flow (objective function = in-
stantaneous operating costs, solution = exact economic dispatch)

control variables and dependent variables such as load voltages,
\ctive sources, and tie line power angles. The method is based on
e it o @ Almobmant

and 2) optimal reactive power flow (objective function = total
system losses, solution = minimum losses).

® 1962: formalization of the OPF problem by Carpentier !
See also the first German reference on this topic [Edelmann, 1965]

® 1967: solution of the power flow equations by Newton method
[Tinney and Hart, 1967]

® 1968: first practical method to solve OPF using generalized reduced gradient
[Dommel and Tinney, 1968]

® 1980s: most OPFs are solved using sequential linear programming (SLP) or
sequential quadratic programming (SQP) [Sun et al., 1984]

® 1990s: the interior-point method becomes the dominant methods to solve OPF

11 was not able to find the original paper...

Some historical lessons

Take-away

Sparse linear algebra is key for scalability!

In fact, Tinney was one of the first researcher to work on sparse linear algebra
[Tinney and Hart, 1967]!

Direct Solutions of Sparse Network Equations by
Optimally Ordered Triangular Factorization

WILLIAM F. TINNEY, SENIOR MEMBER, TEEE, AND JOHN W. WALKER, MEMBER, IEEE

wvery inefficient. In general, the matrix of the equations
formed from the given conditions of a network problem is
"'“"o""‘."""" """"' factorization of spanse matriess & o, 10 whereas its inverse is full. By means of an appro-
m ‘With this method, €irct soltioms are compatod from sparse Priately ordered triangular decomposition, the inverse of a
matrix factors instead of from s full mverse matrix, n-w—-. asig- Sparse matrix can be expressed as a product of sparse matrix
nificant sdvantsge i speed, computer memory requirements, and factors, thereby gaining an advantage in computational
foumd-of arver, Rptavsmiants +f 46 40 400 &2 it B spied dud l""— speed, storage, and reduction of round-off error.

5 of 35

Outline

The importance of sparse linear algebra

6 of 35

Coming back to the power flow problem

For transmission network, it is commonplace to solve the power flow equations in
polar form using Newton method (see Lecture II)

Using the same notations as in Lecture I, the Newton iterations write:
—1
Xkt — ok _ (Df(Xk)) f(Xk)

with the square Jacobian

JP0JPN
Df(X): (qu qu) € R™XM™

and x € R"™ a vector storing the values of the dependent variables

® The Jacobian Dr(x) is super-sparse (and has a graph-structure)

. . -1
® |n practice we never compute the inverse (Df(X))
— use matrix factorization instead

7 of 35

The LU decomposition

If the Jacobian is non-singular, it decomposes as
De(x)=LU
with L lower-triangular, U upper-triangular

The decomposition LU is called a matrix factorization: it is a generalization of
Gaussian elimination

Solving the triangular system L~!x (resp. U~1x) is straightforward using a backsolve
Once the matrix factorized, solving the system (Df(x*))~1f(x*) in the Newton

iterations just translates to two successive backsolves:

(D,c(xk))ilf(xk) =U"tv with v:=L"1(xK)

[llustrations

Dy (x) = L x U

Figure: LU decomposition of the power flow Jacobian for 1354pegase (computed using KLU)

9 of 35

Pivoting

For a sparse matrix A, we compute the LU decomposition of a permuted matrix
A=PLUQ

with P row permutation matrix and Q column permutation matrix

The goal is to reduce the fill-in (almost dense rows in L and U)

Finding the permutation minimizing the fill-in is NP-hard :
in practice the permutation is found using complicated heuristics
(approximate minimum ordering being one of the most common)

Testing different permutations for the power flow Jacobian

Original AMD ordering

Metis ordering

11 of 35

Sparse direct linear solver

In practice, the LU decomposition is computed by a sparse direct solver

Most direct solvers use the following operations:

1. Symbolic factorization: Analyse the matrix sparsity pattern and find an ordering
that reduces the fill-in. Then instantiate the sparse factors in memory

2. Numerical factorization: Compute inplace the nonzero values in L and U

3. Backsolve: Solve the system L~1b and U~1d to get solution of the linear system

Sparse direct linear solver

In practice, the LU decomposition is computed by a sparse direct solver

Most direct solvers use the following operations:

1. Symbolic factorization: Analyse the matrix sparsity pattern and find an ordering
that reduces the fill-in. Then instantiate the sparse factors in memory

2. Numerical factorization: Compute inplace the nonzero values in L and U

3. Backsolve: Solve the system L~1b and U~1d to get solution of the linear system

When solving power flow, the symbolic factorization has to be computed only once
(the sparsity pattern remains fixed as the network remains the same)

Practical (open-source) sparse LU solvers
® SuperLU
® UMFPack

® KLU (particularly fast for power flow equations)

If you are interested into that topic, a very good reference is [Stewart, 2003]

12 of 35

Is there any alternative to sparse direct solver?

We have just seen that the system Ax = b can be solved efficiently
using a direct solver

® Sparse direct solver can be slow if the matrix becomes very large

® Sometimes, we cannot find a permutation that reduces the fill-in

Iterative methods (aka Krylov methods) are practical alternative to a direct solver
provided an efficient preconditioner M is available

Iterative methods have a much lower memory footprints than direct solvers
(just require sparse matrix-vector products)

Using a left-preconditioner M, an iterative method solves the preconditioned system
MAx = Mb

M can be computed e.g. using incomplete-LU, or with block-Jacobi.
An ideal preconditionner M would satisfy

M~ AT

13 of 35

Practical iterative methods

A is symmetric definite
® Conjugate gradient (CG)
® Conjugate residual (CR)

A is indefinite (as is the case in power flow)
® Biconjugate gradient (BiCG)
® Biconjugate gradient stabilized (BiCGstab)
® Generalized minimal residual method (GMRES)

In practice, iterative methods are harder to tune than a direct solver, but can be much
more effective

— for power flow, BiCGstab is a valid alternative to a sparse LU solver

14 of 35

Numerical experiments

Experiment

Solve the power flow equations in 9241pegase (from matpower) with the solver KLU

it
it
it
it
it
it
it

6:

g W N = O

=W 00

.08645e+02
.84101e+01
.88123e+01
.45636e+00
.75824e-01
.59846e-04
3.

02185e-09

Power flow has converged: true

*

*
*
*

iterations: 6

Time Jacobian (s): 0.1044
Time linear solver (s) ...: 0.0161
Time total (s): 0.1216

15 of 35

Outline

Solving large-scale optimal power flow instances

16 of 35

We are now ready to tackle the optimal power flow problem

From now on, we consider the optimal power flow in polar form

min f(x, u)
X,u power flow
-— -

subject to g(x,u) =0

h(x,u) >0

line flow constraints

with

® x: dependent variables
(voltage magnitudes at PQ nodes, voltage angles)

® u: degrees of freedom
(voltage magnitudes at PV and REF nodes, active power generations)

® The optimal power flow problem is non-convex

® |ts coupling structure is determined by the power flow equations

17 of 35

Karush-Kuhn-Tucker (KKT) conditions

A locally optimal solution of the OPF satisfies the KKT conditions:
Vxf(x, u) + Dg x(x, u)Ty — Dy x(x, u)Tz =0
Vuf(x, u) + Dg,u(x, u)Ty— Dy, u(x, u)Tz=0
glx,u)=0
0<zlh(x,u)>0

where the symbol | denotes the complementarity constraints

zihi(x,u) =0 Vi=1,...,my

® |If we find a solution of the KKT conditions with positive curvature,
then it is a locally optimal solution

® The KKT conditions are nonsmooth equations

18 of 35

Coming back to the origin: Dommel & Tinney method

The power flow equations are easy to solve: for a fixed u, the Newton method finds a
state x(u) solution of the power flow

g(x(u), u) =0

The implicit function theorem tells us that x(u) is at least twice differentiable,
its Jacobian satisfying

-1
Dx(u) = —(Deux(x(u), 1))~ De,u(x(u), u)
The OPF problem becomes equivalent to the reduced problem

min f(x(u),u) subject to h(x(u),u) >0
u

® Dommel & Tinney method is a reduced space method
It was the first practical method to solve OPF

® In practice, Hessian is fully dense and can be complicated to evaluate

® Original method encountered difficulties in handling the inequality constraints

19 of 35

Current state-of-the-art: the interior-point method (IPM)

N.B.: The inequality constraints are the real difficult part in OPF

First, IPM reformulates the OPF problem with a slack variable s such as

min f(x, u)

X,U,S
subject to g(x,u) =0
h(x,u)y—s=0,s>0

For a given barrier parameter p > 0, the primal-dual interior-point method
approximates the KKT conditions of this new problem by

Vxf(x, u) + Dg x(x, u)Ty — Dp x(x, u)'z=0

Vuf(x, u) + Dg,u(x, u)Ty — Dy, u(x, u)Tz =0

glx,u)=0

h(x,u)—s=0

0<zl1ls>0

Current state-of-the-art: the interior-point method (IPM)

N.B.: The inequality constraints are the real difficult part in OPF

First, IPM reformulates the OPF problem with a slack variable s such as

min f(x, u)
X,U,S

subject to g(x,u) =0
h(x,u)y—s=0,s>0

For a given barrier parameter p > 0, the primal-dual interior-point method
approximates the KKT conditions of this new problem by

Vxf(x, u) + Dg x(x, u)Ty — Dy x(x, u)Tz =0
Vuf(x, u) + Dg,u(x, u)Ty — Dy, u(x, u)Tz =0

g(x,u) =0
h(x,u)—s=0
ZSe = pe

We obtain a system of nonlinear equations, solvable by Newton method!

20 of 35

Newton step

Starting from a feasible iterate, the Newton direction is computed at each iteration as
solution of the linear system

Wix Wi 0 G —H!T [Ax Kkt
Wix Woy 0 G —H | | Au kkty,
0 0 Z o S As | = — | kkts
Gx G, 0 0 O Ay kkt,
H¢e H, =1 0 0 Az kkt,

As before, we obtain an indefinite matrix!

So we use sparse LU, or?

21 of 35

Augmented KKT system

In fact, the linear system is equivalent to the symmetric indefinite system

Wix Waw 0 G Hl Ax kkty
Wix Wow 0 G HT Au kkt,
0 0 Sz o —i As | = — | S lkkts
Gx Gy 0 0 0 Ay kkty
He H, -1 0 0 —Az kkt,

This linear system is called the augmented KKT system

The augmented KKT system can be factorized efficiently using a LBL decomposition
(a generalization of the Cholesky factorization)

® This is the system used in current nonlinear IPM solvers
(Ipopt, Knitro, MadNLP)

® The system becomes ill-conditioned as we are reaching convergence
(for active constraints s; — 0)

® In practice, 90% of the time is spent factorizing the augmented KKT system

Inertia revealing solver

The inertia of a symmetric matrix A is the triple (n4, n—, ng) giving the number of
positive, negative and zero eigenvalues

Proposition
If in the augmented KKT system

1. The Jacobian is full row-rank

2. The reduced Hessian? is positive definite
then the solution A is a descent direction.

This is equivalent to check that the inertia of the augmented KKT system is
(n+ mp, mg + my,0).

The solver checks the inertia of the matrix at each iteration. If the inertia is not
correct, the system is regularized as

Wix + 6wl Wiy 0 G/ H]
Wix W+l 0 GJ HJ
0 0 sz o -1
Gx Gy 0 -6 0
Hiy H, -1 0 o0

2the projection of the Hessian onto the null-space of the Jacobian

23 of 35

Solving the augmented KKT system

Implementing a stable LBL decomposition requires complicated pivoting operations

Duff-Reid factorization:
A=PQLBLT QTPT
with
® P: fill-in minimization matrix
® Q: additional pivoting for numerical stability
® [: unit lower-triangular matrix
® B: block diagonal matrix with blocks of dimension 1 x 1 or 2 x 2

— Getting an efficient algorithm for the numerical pivoting Q is highly non trivial

The LBL factorization has become competitive only in the 1990s, using a technique
known as matching-based preprocessing [Duff and Koster, 2001]

The progress in sparse linear solvers has directly benefited to nonlinear optimization
solvers such as Ipopt or Knitro

Practical linear solvers implementing the LBL factorization

MUMPS (Multifrontal massively parallel sparse direct solver)
® Large-scale solver leveraging MPI
® Open-source, but does not offer the best performance for OPF

® Use by default in Ipopt

HSL (Harwell Subroutine Library)
® HSL MA27 : multifrontal LBL solver, naive implementation
® HSL MA57 : multifrontal LBL solver, using BLAS as a backend
® HSL MAB8G6 : supernodal LBL solver, using multithreading
® HSL MA97 : same as MA86, but with multiprocessing using MPI

Panua Pardiso (supernodal LBL solver)

The solver HSL MAZ27 is often offering the best performance for OPF problems

25 of 35

The importance of automatic differentation

IPM has to evaluate the Hessian W and the Jacobians G and H
— these matrices are highly sparse

® We never evaluate the Hessian W and the Jacobians G and H by hand
(except in matpower...)

® Use (sparse) AD!

® AD is usually provided for free if you use an optimization modeler

- AMPL
- CasADi
- JuMP

Using automatic differentiation (AD), we can evaluate G and H using one forward
pass (=Jacobian vector-product), and the Hessian W with a forward-over-reverse pass
(=Jacobian vector-product of the gradient)

Take into account the sparsity pattern of each matrix to reduce the number of
Jacobian-vector products required! — sparse matrix coloring method

26 of 35

Practical optimization solvers to solve large-scale OPF

Ipopt
® Filter line-search globalization

® Open-source

Knitro
® Trust-region steps using the Byrd & Omojokun method

® Commercial

MadNLP
® Port of Ipopt in Julia

® Open-source, and supports GPU acceleration

Numerical results

We analyse the convergence of lIpopt on 9241pegase

Ipopt displays the following information at each iteration:

inf_pr: primal infeasibility

inf_du: dual infeasibility

lg(mu): current barrier parameter

I1dl1: norm of the descent direction
1lg(rg): current primal-dual regularization
alpha_du: dual line-search step
alpha_pr: primal line-search step

1s: number of line-search step

28 of 35

Numerical results

We analyse the convergence of Ipopt on 9241pegase

Ipopt displays the following information at each iteration:

inf_pr: primal infeasibility

inf_du: dual infeasibility

lg(mu): current barrier parameter

|1dll: norm of the descent direction
1g(rg): current primal-dual regularization

alpha_du: dual line-search step

(should converge to 0)
(should converge to 0)
(should converge to 0)
(should converge to 0)

(should stay at 0)

(should be close to 1 for Newton step)

alpha_pr: primal line-search step (should be close to 1 for Newton step)

1s: number of line-search step

(should stay at 1)

28 of 35

Outline

Advanced topics

29 of 35

Security-constrained OPF with N — 1 criterion

In practice, system operators solve more complicated variants of the OPF,
with multiple time periods and security constraints

In this last section, we look at the security-constrained OPF (SC-OPF),
with K a given number of contingencies (line or generator trippings). Denote

® xp: state variable in the base nominal case

® x,: state variable in the contingency k =1,--- /K

What is the best control that maintains feasibility in all the contingencies?

min f(xo, u)
X05X1s " s XK U power flow in contingency k

g u)=0 Vk=0,---,K

h(xg,u) >0 Vk=0,---,K

T line flow constraints in contingency k

Observe that u is the only coupling variable!

Block linear system with arrowhead structure

As before, we can solve the SCOPF using interior-point... but the linear system gets
much larger!

We reach the limit of the current generation of linear solvers even with a small
number of contingencies

Use structure exploiting method instead: after careful reordering, we can prove that
the linear system has a block arrowhead structure

For wy := (Xk, Yk, zk), we solve

A1 B Awg r
AK B; AWK rg
Bl e BK Ao Au (0]

The last column corresponds to the coupling variable u

Solution with the Schur-complement
Exploit the arrowhead structure in the pivots

1. Solve the Schur-complement system

K

K
Ao — Z BA B! | Au=ro - Z BiA n,
k=1 k=1

2. Recover the steps Awy using

Aw, = A;l(rk - B[Au)

The bottleneck lies in assembling the Schur complement:
® Require solving AZIBE, a linear system with multiple sparse right-hand-sides
® Number of right-hand-sides is n,, the number of coupling variables:
the greater n, gets, the harder the solution is
® Fortunately, the Schur-complement can be assembled efficiently using the
incomplete LU trick [Petra et al., 2014]
The solution of the linear system can be distributed using MPI
The Schur-complement is more ill-conditionned than the original system

® A similar procedure exists for multiperiod OPF

32 of 35

Conclusion

Take away message

For performance, always leverage sparse linear algebra!

If you are interested into solving large-scale OPF, check this recent tutorial:

https://frapac.github.io/tutorials/powertech/

33 of 35

https://frapac.github.io/tutorials/powertech/

References |

[
[

Dommel, H. W. and Tinney, W. F. (1968).
Optimal power flow solutions.
IEEE Transactions on power apparatus and systems, (10):1866-1876.

Duff, I. S. and Koster, J. (2001).
On algorithms for permuting large entries to the diagonal of a sparse matrix.
SIAM Journal on Matrix Analysis and Applications, 22(4):973-996.

Edelmann, H. (1965).

Die beriicksichtigung von ungleichungsbedingungen und
konvergenzverbesserungen bei der digitalen berechnung optimaler
lastverteilungen.

Archiv fiir Elektrotechnik, 49:320-330.

Petra, C. G., Schenk, O., Lubin, M., and Gértner, K. (2014).

An augmented incomplete factorization approach for computing the Schur
complement in stochastic optimization.

SIAM Journal on Scientific Computing, 36(2):C139-C162.

Stewart, G. (2003).
Building an old-fashioned sparse solver.

Sun, D. I., Ashley, B., Brewer, B., Hughes, A., and Tinney, W. F. (1984).
Optimal power flow by newton approach.
IEEE Transactions on Power Apparatus and systems, (10):2864—2880.

34 of 35

References Il

Tinney, W. F. and Hart, C. E. (1967).
Power flow solution by newton's method.
IEEE Transactions on Power Apparatus and systems, (11):1449-1460.

35 of 35

	Brief historical perspectives
	The importance of sparse linear algebra
	Solving large-scale optimal power flow instances
	Advanced topics

