
Towards nonlinear programming on the GPU
JuMP-dev 2021

Exanauts

Mathematics and Computer Science Division
Argonne National Laboratory

July, 2021

Who we are?

We are a team of enthusiastic computational mathematicians at Argonne National Lab

X Mihai Anitescu (PI, ANL)
X Kibaek Kim (ANL)
X Youngdae Kim (ANL)
X Daniel Adrian Maldonado (ANL)
X Alexis Montoison (GERAD)

X Vishwas Rao (ANL)
X Michel Schanen (ANL)
X Sungho Shin (ANL)
X Anirudh Subramanyam (ANL)

ExaSGD project
• Optimizing Stochastic Grid Dynamics
at ExaScale

• Leverage new GPU-centric HPC architectures

2 of 20
.

Nonlinear optimization: the current landscape
Nonlinear optimization problem
Let f : Rn → R and g : Rn → Rm be two generic nonconvex smooth functions

min
x∈Rn

f (x) s.t. g(x) ≤ 0

Numerical optimization algorithms depend on two key routines
1. Derivatives: Explicit derivatives, Finite Differences, Automatic Differentiation
2. Linear solve: Solve KKT system to compute descent direction

(∇2
xx `k)dk = −∇x `k

n < 1, 000 1, 000 < n < 500, 000 n > 500, 000

Dense LinAlg Sparse Linalg Matrix-vector products
LAPACK HSL MA27/MA57

3 of 20
.

Nonlinear optimization: the current landscape
Nonlinear optimization problem
Let f : Rn → R and g : Rn → Rm be two generic nonconvex smooth functions

min
x∈Rn

f (x) s.t. g(x) ≤ 0

Numerical optimization algorithms depend on two key routines
1. Derivatives: Explicit derivatives, Finite Differences, Automatic Differentiation
2. Linear solve: Solve KKT system to compute descent direction

(∇2
xx `k)dk = −∇x `k

n < 1, 000 1, 000 < n < 500, 000 n > 500, 000

Dense LinAlg Sparse Linalg Matrix-vector products
LAPACK HSL MA27/MA57

3 of 20
.

Julia’s optimization ecosystem is already quite consistent...

The current ecosystem

X ForwardDiff.jl for forward-mode
Automatic Differentiation

X JuMP as a nonlinear modeler
- Expression graph for nonlinear expr
- Custom reverse-mode AD
- Graph coloring for sparse Hessian

X Various optimization solvers available
- Optim.jl for dense optimization
- Wrappers for nonlinear solvers
(Ipopt, Knitro, NLOpt)

The vanguard

X New packages for reverse-mode AD
+ Zygote.jl
+ Enzyme.jl
+ Diffractor.jl

X New nonlinear optimization solvers
+ JuliaSmoothOptimizers
+ MadNLP.jl

+ Premium support for CUDA

4 of 20
.

... but porting nonlinear optimization to the GPU is still non trivial

Two inconvenient truths about GPUs

• Fact 1: Reverse mode Automatic Differentiation is hard to parallelize
• In Julia, excellent support of forward mode automatic differentiation on GPUs
• But, parallelizing reverse mode is difficult for large model

(race condition, storing intermediate)

• Fact 2: Scarce support of sparse linear algebra
• No equivalent to MA27/MA57 on GPUs yet (Tasseff et al., 2019)
• GPU are not efficient to factorize matrix with unstructured sparsity...

5 of 20
.

What if we exploit the structure of the problem?
Key idea
We exploit the structure of the problem to solve optimization problems on the GPU

We investigate two different approaches

1. Reduced-space approach
min
x,u

f (x , u)

s.t. g(x , u) = 0
2. Decomposition-based approach

min
x,z

f (x) + g(z)

s.t. Fx + Gz = d

Both examples will be tested on the classical
Optimal Power Flow problem

6 of 20
.

Outline

Solving structured optimization problems on the GPU

Towards generic nonlinear programming on the GPU

7 of 20
.

Problem 1: Reduced space approach

Figure: Nonlinear power flow
(from Hiskens and Davy (2001))

Most real-life nonlinear problems encompasses
a set of physical constraints

G(x , u) = 0

with x a state and u a control

Domain G
Optimal control Dynamics
PDE-constrained optimization PDE
Optimal power flow Power flow

Physically-constrained optimization problem

min
x,u

F (x , u)

s.t. G(x , u) = 0 , H(x , u) ≤ 0

8 of 20
.

Projecting the problem into the powerflow manifold
• If ∇xG is non-singular, then Implicit Function theorem applies
• For each u, there exists a local function x(u) such that

G(x(u), u) = 0

(numerically, the nonlinear equation is inverted with Newton-Raphson)

Reduced problem
Let f (u) := F (x(u), u) and h(u) := H(x(u), u).

min
u

f (u) s.t. h(u) ≤ 0

Reduced gradient
Let F : Rnx × Rnu → R a differentiable function
Then, the function f (u) := F (x(u), u) is differentiable, and

∇f (u) = ∇uF︸︷︷︸
nu

+ (∇uG︸︷︷︸
nx×nu

)> λ︸︷︷︸
nx

with (∇xG︸︷︷︸
nx×nx

)>λ = −∇xF︸︷︷︸
nx

The vector λ ∈ Rnx is the first-order adjoint

9 of 20
.

Reduced Hessian: dense, dense, dense!

X X =

n

n

m

Can we extract second-order information
as well? Yes!
• We derive two first-order adjoints ψ
and z, using the adjoint-adjoint
method (Wang et al., 1992)
• Involve only Hessian-vector products!
• Reduced Hessian ∇2f is dense
(dimension nu × nu)

Reduced Hessian
Let w ∈ Rnu be a vector and Ĝ the first-order residual:

Ĝ(x, u,λ) := ∇xF (x, u) +∇xG(x, u)>λ

The Hessian-vector product (∇2f)w is equal to

(∇2f)w = (∇2
uuF) w + λ>(∇2

uuG) w + (∇uG)>ψ + (∇2
uxF)>z + λ>(∇2

uxG)>z

with the second-order adjoints (z,ψ) defined as{
(∇xG) z = −(∇uG) w

(∇xG)>ψ = −(∇uĜ)w − (∇x Ĝ)z ,

10 of 20
.

Porting Automatic Differentiation to the GPU

Nonlinear system

ProjectionG(x, u) = 0

Reduced gradient∇xG,∇uG

Reduced Hessian∇2
xxG,∇2

xuG,∇2
uuG

• Projection:
X Solve G(x , u) = 0 with Newton-Raphson

xk+1 = xk − (∇xG)−1G(xk , u)

X Sparse Jacobian ∇xG computed
with forward-mode + graph coloring

• Reduced Hessian:
X Forward-over-Reverse, directly on the GPU
X No coloring involved!
X Batch automatic differentiation for reverse mode
X Sparse linear systems solved in batch

Automatic Differentiation backend
• Forward-mode: custom layer on top of ForwardDiff.jl,

X Almost straightforward to use on the GPU, thanks to Revels et al. (2018)
X We add support to Jacobian coloring on GPU

• Reverse-mode: hand-written adjoints
x Zygote.jl works on the GPU, but was not adapted to our use-case...
x Race-conditions (getindex becomes setindex! in reverse mode)
→ hopefully, soon implemented with Enzyme.jl (Moses and Churavy, 2020)!!

(works directly at the LLVM level, compatible with KernelAbstractions.jl)

11 of 20
.

An implementation running entirely on the GPU

• All callbacks run entirely on the GPU
(using KernelAbstractions.jl as portability layer)
• Sparse linear systems solved either with

X Direct LU solver (cusolverRF)
X Iterative BICGSTAB (Krylov.jl)

ReducedSpaceEvaluator abstraction
All callbacks (objective, gradient, Hessian) abstracted in a ReducedSpaceEvaluator
• Follow closely the interface of NlpModels.jl
• Interfaced with MOI!!� �

1 opf = ReducedSpaceEva luato r (" case9241pegase .m")
2 u = i n i t i a l (op f) # i n i t i a l p o i n t from MATPOWER
3 update ! (opf , u) # So l v e PF
4 o b j e c t i v e (opf , u)
5 g r a d i e n t (opf , u) # Reduced g r a d i e n t
6 h e s s i a n (opf , u) # Reduced Hes s i an� �

12 of 20
.

Results
Evaluating full reduced Hessian in parallel
(on case9241pegase, nu = 2, 889)

i) Reduced space: CPU versus GPU

4 8 16 32 64 128 256 512
Batch size N

0

2

4

6

8

10

Ti
m

e
/ H

es
si

an
-v

ec
to

r
pr

od
uc

t (
m

s)

V100
Time CPU
Forward solve
AutoDiff
Backward solve

ii) Reduced space versus full space

lib device space time
AMPL CPU full-space 130ms
ExaPF GPU reduced-space 350ms

Table: Time to evaluate the Hessian of the
Lagrangian

Take-away messages
X Fast Hessian evaluation using batching
X Dense Hessian easy to factorize

on the GPU using CUDA/LAPACK
x Memory heavy when using

large number of batches
x Bottleneck is currently the

sparse linear algebra kernel

Next:
1. Abstracting things further to get a

generic paramerized nonlinear solver
in Julia

G(x , u) = 0
2. Develop optimization algorithms in

the reduced space to optimize w.r.t.
the control u

13 of 20
.

Problem 2: decomposition based approach

x We saw that sparse linear algebra is a
bottleneck on the GPU

X What if we use an operator-splitting method
instead?

min
x,z

f (x) + g(z)

s.t. Ax + Bz = d

• Graph-based problems have a structure amenable to decomposition
• Allow to solve many small optimization subproblems in parallel!

ADMM-based decomposition

xk+1 ∈ arg min
x

f (x) + (λk)>Ax + ρ

2
‖Ax + Bzk − d‖2

zk+1 ∈ arg min
z

g(z) + (λk)>Bz + ρ

2
‖Axk+1 + Bz − d‖2

λk+1 = λk + ρ(Axk+1 + Bzk+1 − d)

14 of 20
.

ExaTron: a large-scale optimization solver for GPUs

1. Decompose the OPF problem component by component:
• Bus subproblems: analytical expression available for solution
• Generator subproblems: analytical expression available for solution
• Branch subproblems: bounded (dense) nonlinear optimization problem
• Coupling constraints: formulates as linear constraints Ax + Bz = d

minx1≤x1≤x1 f1(x1) minx2≤x2≤x2 f2(x2) ... minxN≤xN≤xN fN(xN)

...

Figure: Once the problem decomposed, we get many small dense optimization subproblems to solve

2. Solve the branch subproblems in parallel, on the GPU
• Dense optimization problems
• First and Second-order derivatives evaluated in parallel
• Each subproblem solved in parallel on the GPU, with a dense Tron algorithm

3. Coordination with an ADMM algorithm
• Implement the two-level ADMM algorithm of Sun and Sun (2021)
• Convergence guaranteed, even for nonconvex problems

→ For detailed results, see Youngdae Kim’s talk at JuliaCon!

15 of 20
.

Implementation

For case9241pegase: 16,049 subproblems
(all solved in parallel)

Solver device time
Knitro+AMPL CPU 110s

ExaTron GPU 10.5s

Table: Time to solve case9241pegase (N.B.:
This comparison is given only to give an order of
magnitude, as we cannot compare ExaTron’s
stopping criterion with Knitro’s one)

ExaTron.jl
• Julia implementation,
on top of CUDA.jl
• No dependency to linear algebra
(only dense matrix-vector products)!
• Tested extensively on Summit in a
multi-GPU setting

16 of 20
.

Outline

Solving structured optimization problems on the GPU

Towards generic nonlinear programming on the GPU

17 of 20
.

Porting the optimization solver to the GPU
Coming back to the generic nonlinear problem

min
x

f (x) s.t. g(x) ≤ 0

Promising works ahead!
• Hiop

X Currently developed at LLNL
X Implemented in C++, using RAJA/Umpire as portability layer
X Mixed dense/sparse linear algebra for the KKT system

• MadNLP.jl
X Developed by Sungho Shin (Shin et al., 2020)
→ see MadNLP lightning talk at JuMP-dev!

X Allow to deport the factorization of the KKT system on the GPU (LapackGPU)
X Modularity!

Open question
Suppose we have a parameterized nonlinear problem, defined as

min
x

f (x , p)

s.t. g(x , p) ≤ 0

For parameters p1, · · · , pN , can we solve the problem in batch on the GPU?

18 of 20
.

Porting the modeler to the GPU

Challenge
How to handle vectorized operations at the modeler level?� �

1 m = Model ()
2 @vecto r (m, Pg , 1 : ngen) # gene r a t o r s ’ s a c t i v e power
3 @vecto r (m, Vm, 1 : nbus) # vo l t a g e magni tudes
4 @vecto r (m, Va , 1 : nbus) # vo l t a g e a ng l e s
5 @params (m, Pd , 1 : nbus) # a c t i v e l o a d s
6 @graph (m, G, Yre)
7 @spequat ion (m, Cg ∗ Pg .− Pd .= vm .∗ sum (vm [l]
8 .∗ (Yre [k , l] ∗ cos (va .− va [l])
9 .+ Yim [k , l] ∗ s i n (va .− va [l])) ,
10 f o r l i n G)� �

→ Can we automatically generate GPU kernels?
→ Open question: how to specify the problem’s structure, such as

G(x , u) = 0 , Fx + Gz = d

Towards a StructJuMP package at the MOI level?

19 of 20
.

Conclusion

Take away
• Large-scale optimization tractable on the GPU by exploiting the structure

X Reduced space approach
X Decomposition-based approach

• Generic nonlinear programming is still an open-problem
• We believe that we will observe tremendous changes in the following years!

X Towards a mature reverse mode automatic differentation in Julia
X Efficient sparse linear algebra routines on GPU accelerators

tl;dr: we would be interested to contribute to the JuMP’s NLP rewrite ;-)

Links
• Slides available at: https://frapac.github.io/pdf/jump-dev-2021.pdf
• Reduced-space code: https://github.com/exanauts/ExaPF.jl/
• ExaTron: https://github.com/exanauts/ExaTron/

20 of 20
.

https://frapac.github.io/pdf/jump-dev-2021.pdf
https://github.com/exanauts/ExaPF.jl/
https://github.com/exanauts/ExaTron/

References I

Hiskens, I. A. and Davy, R. J. (2001). Exploring the power flow solution space boundary. IEEE transactions on power systems,
16(3):389–395.

Moses, W. S. and Churavy, V. (2020). Instead of rewriting foreign code for machine learning, automatically synthesize fast gradients.
arXiv preprint arXiv:2010.01709.

Revels, J., Besard, T., Churavy, V., De Sutter, B., and Vielma, J. P. (2018). Dynamic automatic differentiation of gpu broadcast kernels.
arXiv preprint arXiv:1810.08297.

Shin, S., Coffrin, C., Sundar, K., and Zavala, V. M. (2020). Graph-based modeling and decomposition of energy infrastructures. arXiv
preprint arXiv:2010.02404.

Sun, K. and Sun, X. A. (2021). A two-level admm algorithm for ac opf with convergence guarantees. IEEE Transactions on Power Systems.

Tasseff, B., Coffrin, C., Wächter, A., and Laird, C. (2019). Exploring benefits of linear solver parallelism on modern nonlinear optimization
applications. arXiv preprint arXiv:1909.08104.

Wang, Z., Navon, I. M., Le Dimet, F.-X., and Zou, X. (1992). The second order adjoint analysis: theory and applications. Meteorology
and atmospheric physics, 50(1):3–20.

	Solving structured optimization problems on the GPU
	Towards generic nonlinear programming on the GPU
	References

