
Revisiting structure-exploiting optimal power flow methods

François Pacaud
CAS @ Mines Paris-PSL

3rd workshop of the RTE Chair at CentraleSupélec
May 25, 2023



Who am I?

Numerical optimizer by heart

• Former postdoc at Argonne National Lab
• Now assistant professor at Mines Paris-PSL

These slides are summarizing the work we did during my postdoc at
Argonne National Lab between 2020 and 2022

Joint work with:
Mihai Anitescu, Adrian Maldonado, Michel Schanen, Sungho Shin

Broader research question
Can we solve large-scale nonlinear optimization problems on GPUs?

2 of 15
.



Motivation: solving optimal power flow problems on GPU architectures

Observation
Handling unstructured sparsity on SIMD architectures is non trivial

Physical model
unstructured

Upcoming hardware
GPU centric (SIMD)

3 of 15
.



Why GPUs are hard for optimizers?
Observation

• GPUs = SIMD architectures (single instruction, multiple data)
• Excellent for dense and batch operations

On their hand, numerical optimization depends on two key routines
1. Derivatives: Evaluate derivatives using Automatic Differentiation
2. Linear solve: Compute the descent direction dk by solving the

KKT system
(∇2

xx ℓk)dk = −∇x ℓk

where (∇2
xx ℓk) is sparse symmetric indefinite

(from [Tasseff et al., 2019])

→ Problem: there is no good sparse symmetric
indefinite solver on GPU

4 of 15
.



Our solution: densification

sparse dense

Idea: Exploit the available degrees of freedom
Densify the problem using the reduced Hessian

Ĥuu = Z ⊤(∇2
xx ℓk)Z

Intuition: dense is easy on the GPU

5 of 15
.



MadNLP: a GPU-ready interior-point solver

MadNLP [Shin et al., 2020]
• Port of Ipopt in Julia
• Filter line-search interior-point method
• Fully modular & Open-source:

https://github.com/MadNLP/MadNLP.jl

• Linear solver: We compare two linear solvers for KKT system
1. The reference: HSL ma27 running on the CPU
2. The contender: our reduction algorithm, using cusolver to factorize the

reduced matrix with dense Cholesky on the GPU

6 of 15
.

https://github.com/MadNLP/MadNLP.jl


Expliciting the physical constraints in the optimization problem

Figure: Nonlinear power flow
(from [Hiskens and Davy, 2001])

Most real-life nonlinear problems encompasses
a set of physical constraints

g(x, u) = 0

with x a state and u a control

Domain g
Optimal control Dynamics
PDE-constrained optimization PDE
Optimal power flow Power flow

Physically-constrained optimization problem

min
x,u

f (x, u)

s.t. g(x, u) = 0 , h(x, u) ≤ 0

Well-known method [Cervantes et al., 2000, Biros and Ghattas, 2005]

7 of 15
.



Interior-point in a nutshell
Notations

• W : Hessian of Lagrangian
• G : Jacobian of equality constraints (power flow)
• A: Jacobian of inequalities (operational constraints, e.g. line flows)

The interior-point methods (IPM) reformulates the problem in the standard
form:

min
x,u,s

f (x, u)

s.t. g(x, u) = 0 , h(x, u) + s = 0, s ≥ 0
At each iteration, IPM solves the augmented KKT linear systemW + Σp 0 G⊤ A⊤

0 Σs 0 I
G 0 0 0
A I 0 0


pv

ps
pλ

py

 =

r 1
r 2
r 3
r 4


(in olive, blocks associated to the inequality constraints)

→ the KKT system has a very specific structure!
8 of 15

.



Condense step: we remove the inequality constraints

1323 x 1323

⇓

469 x 469

We remove the blocks associated to the inequality
constraints by taking the Schur-complement

Condensed KKT
We define the condensed KKT matrix as

K := W + A⊤ΣsA

The augmented KKT system is equivalent to[
K + Σp G⊤

G 0

] [
pp
pλ

]
=

[
r 1 + A⊤(Σsr 4 + r 2)

r 3

]

N.B.: This step is usually discarded because of additional fill-in in left-hand-side matrix,
but here our goal is to densify the KKT system

9 of 15
.



Reduce step: we remove the equality constraints
Idea: exploit the structure of the power flow equations g(x, u) = 0

469 x 469

⇓

107 x 107

Expending the structure of the condensed KKT system:Kxx + Σx Kxu G⊤
x

Kux Kuu + Σu G⊤
u

Gx Gu 0

 [px
pu
pλ

]
=

[r̂ 1
r̂ 2
r̂ 3

]

Reduced KKT
If the Jacobian Gx is invertible, the reduced Hessian is
defined as

K̂uu := Z ⊤KZ with Z :=
[

−G−1
x Gu
I

]
The condensed KKT system is equivalent to

K̂uu pu = r̂ 2 − G⊤
u G−⊤

x r̂ 1 − (Kux − G⊤
u G−⊤

x Kxx )G−1
x r̂ 3

• Assembling K̂uu requires only the factorization of the sparse Jacobian Gx

• The matrix K̂uu, dense, can be factorized efficiently on the GPU
10 of 15

.



Numerical results: CPU or GPU?
Setting

• MadNLP+ma27
- Derivatives: GPU-accelerated AD
- Linear solver: ma27

• MadNLP+reduced KKT (full-GPU approach)
- Derivatives: GPU-accelerated AD
- Linear solver: reduction on GPU

The reference The contender
MadNLP+ma27 MadNLP+reduced KKT

Case DOF #it Time (s) ma27 (s) #it Time (s) Chol. (s) Reduction (s)
Problems with many degrees of freedom

9241pegase 0.14 69 10.7 6.1 69 23.7 1.2 16.2
ACTIVSg25k 0.10 86 24.7 16.9 86 85.0 4.3 68.1
ACTIVSg70k 0.08 90 89.8 65.7 85 658.2 21.5 606.5

Problems with few degrees of freedom
9591goc 0.02 43 11.7 10.4 43 7.7 2.1 1.6
10480goc 0.03 50 14.0 12.0 50 11.5 3.9 3.3
19402goc 0.02 47 30.8 26.8 47 19.5 4.9 7.2

Table: Comparing ma27 with reduced KKT linear solver. DOF is the ratio of degrees
of freedom.

11 of 15
.



When is reduced better than full-space?

Observation
The smaller the number of degrees of freedom nu,
the more efficient is the reduction of the KKT system

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Ratio of degrees of freedom

100

101

S
pe

ed
-u

p
ra

tio

LinRed is better

Full-space is better
1354

2000

2869
9241

10000

13659

1048019402

9591

Figure: Illustrating the breakeven point

12 of 15
.



Extension to SC-OPF

SCOPF
Add N contingency scenarios (line tripping) to the base case OPF

In preventive mode, the SCOPF formulates as

min
x0,x1,··· ,xN ,u

f (x0, u) subject to


g(x0, u) = 0
h(x0, u) ≤ 0
g(xc , u) = 0 ∀c = 1, · · · , N
h(xc , u) ≤ 0 ∀c = 1, · · · , N

Conservative formulation: the control u (=power generations) is shared across
all contingencies

Observations
• The derivatives can be evaluated in batch on the GPU
• The associated KKT system has a block arrowhead structure we can

exploit in the reduced KKT solver

We follow the same procedure as before: condense then reduce

13 of 15
.



Numerical results on a single GPU (NVIDIA V100)

Setting
• MadNLP+ma27

- Derivatives: GPU-accelerated AD
- Linear solver: ma27

• MadNLP+reduced KKT
- Derivatives: GPU-accelerated AD
- Linear solver: reduction on GPU

MadNLP+ma27 MadNLP+reduced KKT
#bus N #it Tot (s) AD (s) ma27 (s) #it Tot (s) AD (s) reduction (s)
1354 8 61 10.8 0.9 9.9 61 7.9 0.9 7.0
1354 16 54 26.2 1.1 25.1 54 13.3 1.2 12.1
1354 32 253 1302.0 9.0 1293.0 233 172.2 9.0 163.2
1354 64 135 411.7 8.6 403.1 236 357.3 14.5 342.8
9241 8 190 1400.5 31.7 1368.8 187 1017.0 30.5 986.5
9241 16 121 3947.0 38.1 3908.9 123 1091.4 34.4 1067.0

Table: Comparing the performance of the KKT linear solvers

14 of 15
.



Conclusion

Broader research question
Can we solve large-scale nonlinear optimization problems on GPUs?

✓ Yes, we can get a practical algorithm
✓ The more structure, the better

Next
• We showed the approach is practical
• Now, optimize it! (target: x10 speed-up)

15 of 15
.



References I

Biros, G. and Ghattas, O. (2005).
Parallel Lagrange–Newton–Krylov–Schur Methods for PDE-Constrained
Optimization. Part I: The Krylov–Schur Solver.
SIAM Journal on Scientific Computing, 27(2):687–713.

Cervantes, A. M., Wächter, A., Tütüncü, R. H., and Biegler, L. T. (2000).
A reduced space interior point strategy for optimization of differential
algebraic systems.
Computers & Chemical Engineering, 24(1):39–51.

Hiskens, I. A. and Davy, R. J. (2001).
Exploring the power flow solution space boundary.
IEEE transactions on power systems, 16(3):389–395.

Shin, S., Coffrin, C., Sundar, K., and Zavala, V. M. (2020).
Graph-based modeling and decomposition of energy infrastructures.
arXiv preprint arXiv:2010.02404.

Tasseff, B., Coffrin, C., Wächter, A., and Laird, C. (2019).
Exploring benefits of linear solver parallelism on modern nonlinear
optimization applications.
arXiv preprint arXiv:1909.08104.

1 of 1
.


	Appendix

