Argonne°

NATIONAL LABORATORY

Batched Second-Order Adjoint Sensitivity
for Reduced Space Methods

Francois Pacaud”  Michel Schanen”  Daniel Adrian Maldonado®
Alexis Montoison?  Valentin Churavy?  Julian Samaroo  Mihai Anitescu®

l7Argonne National Laboratory (Mathematics and Computer Science Division)
b Polytechnique Montréal (GERAD)
! MIT csAIL

SIAM PP22
Friday, February 25th

@ U5 oEpARTHENT OF




Motivation: solving optimal power flow problems on GPU architectures

Our research is funded by the ECP project: porting algorithms at exascale

Challenge

Handling unstructured sparsity on SIMD architectures is non trivial

Hardware Physical model
GPU centric (SIMD) unstructured

Argome s

? ENERGY

&' 2 of 10



Idea

Compress the graph structure with a nonlinear reduction

min f(x, u)
x,u

= min f(x(u),u)
subject to g(x,u) =0 v

Why?

® The functional x(u) satisfies implicitly g(x(u),u) = 0!

® The second-order derivatives compress to a dense matrix

30f 10



Reduction method: formalism

We denote x € R™ the state, u € R" the control
min f(x, u)
x,u

subject to g(x,u) =0
Assumptions:

® Both the objective f : R x R™ — R and the physical equations
g :R™ x R™ — R"x depend on x and u

® Both f and g have smooth second-order derivatives

Implicit function theorem

Let (x,u) € R™ x R™ such that g(x, u) = 0.
If Vxg(x,u) € R™*"x is invertible, then there exists a local set U € R™ and an
unique differentiable function x : U — R"* such that locally

g(x(u),u) =0 VuecU

In practice x(u) is computed iteratively (e.g. with a Newton Raphson algorithm)

a% 4010



Reduced derivatives: first to second order

Let the reduced functional: f(u) := f(x(u), u)
We note the Jacobians: Gy = Vg € R™*X™x G, = V,g € R™*xXM,

Reduced gradient

The chain rule gives directly:
Vf(u) = Vuf — G G "Vif
Complexity: one linear solve
For A € R™, we define the Lagrangian
(x,u; A) = f(x,u) + AT g(x, u)

We note W = V2 the Hessian of the Lagrangian in the full-space

Reduced Hessian

The reduced Hessian satisfies
V2fr(u) = Wiy — Wix G716y — G G T Way + G G T Wi G 16,
Complexity: n, linear solves

G‘g 5 of 10

Y o s



Implementation

Reduction operation

1 T -1
2 _ |-G "Gy Wix Wi [—-G, "Gy
vt =% %) e 7%

Complexity: either

® pn, linear solves if we store the ny X n, dense matrix S = —G, G;l

® 2n, linear solves otherwise

Two successive operations:
1. Evaluate the Hessian W in the full space (automatic differentation)

2. Reduce the derivatives in the reduced space (linear algebra)

How-to: efficient linear algebra operations on the GPU

® SpMV/SpMM (sparse matrix - vector/matrix product

® SpSV/SpsSM (sparse triangular solve)

® SpRF (sparse refactorization)

\ & _
.y ————— 6 of 10



EEEEEEEEEESS———..
First step: Streamlining the automatic differentation

Factorizing the nonlinearities in the OPF problem (

There exists a basis 1(x, u) € R" and two sparse matrices M, N such that

f(x,u):Mw(x,u)—l—b, g(X,U):sz(X,lI)-i-C,

® Evaluate the basis v first, then recover f and g with SpMV operations
® We have implemented a GPU kernel for ¢ and its adjoint (V)T

Computing the Hessian with forward-over-reverse

The Hessian W is a (super)-sparse matrix
® Find coloring associated to W

® Evaluate W with forward-over-reverse, knowing

(VAT =(Vy)"MT, (Ve)T =(Vy)TNT

Performance: with a dual vector d € D} with p partials, the linear operation MTd
translates to a SpMM operation (RHS matrix with size n x (p + 1))

7 of 10



First step: results

ExaPF: implemented in Julia, using CUDA and KernelAbstractions.jl

Our benchmark cases, ordered by size

(obtained from MATPOWER): Compare time to evaluate W with

Case | ne | e | Neotors . D

TEEELL8 118 186 81 107 | 27 ® Reference: JuMP’s AD
IEEE300 300 411 530 137 | 24 .
PEGASE1354 | 1354 1991 | 2447 519 | 28 (OPEH-SOUI'CS, Julia code)
PEGASE2869 | 2,860 4,582 | 5227 1019 | 35

PEGASE9241 9,241 16,049 | 17,036 2,889 85 [ ]
ACTIVSg25K | 25,000 32,230 | 47,246 6,531 36 @i algo @ the CPU (EXaPF CPU)

® our algo on the GPU (ExaPF GPU)

8 of 10



First step: results

ExaPF: implemented in Julia, using CUDA and KernelAbstractions.jl

Our benchmark cases, ordered by size

(obtained from MATPOWER):

ne | e | Neotors

Case |
IEEE118 118
IEEE300 300

PEGASE1354 1,354
PEGASE2869 2,869
PEGASE9241 | 9,241
ACTIVSg25K | 25,000

Ratio / JuMP

186 181 107
411 530 137
1991 | 2,447 519
4582 | 5227 1,019
16,049 | 17,036 2,889
32,230 | 47,246 6,531

= e o)
107 { - earr cuy)

casel18  case300

case1354 caso2869 case9241

case25K

Compare time to evaluate W with
® Reference: JuMP’s AD

(open-source, Julia code)

® our algo on the CPU (ExaPF CPU)
® our algo on the GPU (ExaPF GPU)

Case | JuMP (CPU)  ExaPF (CPU) ExaPF (CUDA) |
IEEE118 0.002 0.0002 0.003
IEEE300 0.003 0.0005 0.003
PEGASE1354 | 0.019 0.004 0.004
PEGASE2869 | 0.043 0.013 0.006
PEGASE9241 | 0.150 0.145 0.029
ACTIVSg25K | 0.359 0.105 0.035

Table: Results: evaluation time in seconds

8 of 10



Second step: reduction operation
We have computed the Hessian W in the first step

1 T -1
2 _ |-G Gy Wi We| |-G Gy
vew =[5 ] w7

We should avoid allocating the sensitivity matrix S = —GL,G;1 (size nx X ny)!
Instead, use batched HessMat product V2f,(u)V

HessMat kernel: batch adjoint-adjoint reduction

Input: LU factorization, such that PGxQ = L U (2 spMM, 2 SpSM)
For every matrix V € RN
1. Solve Z = G, '(G,V) (3 SpMM, 2 SpsSM)
2. Evaluate |:I-‘IIIU:| = [wz’; a//zﬂ [5] (1 spmm)
3. Solve Hy = G, "W (2 SpMM, 2 SpsM)
4. Output VZf,(u)V = H, — G,Hx (1 spMM)

® Gy first factorized on the CPU with KLU,
then refactorized entirely on the GPU with cusolverRF (fast) !

® div(ny, N) + 1 HessMat products required to get full V2f,(u)

1Credits to Kasia Swirydowicz, PNNL, for the idea and the RF wrapper (Swirydowicz et al., 2021)

S 9 of 10



Second step: results

® Question 1: What is the appropriate batch size N?

® Question 2: What

Ratio (GPU / CPU)
3

10t

10°

—&- case2869pegase
—e- casel35dpegase
—e- case0241pegase
—e- caseACTIVSg25k
—&- casells
8- case300

pa) 75 27 2
Batch size N

is the bottleneck in the reduction algorithm?

Zs
@
Ea
PR
22
]
én
0
<100
S
aému
£ 60
o
£
kf
! 20
o

Performance of reduction as function of batch size N

= 1. Forward solve
-2 SpMM
= 3. Backward solve

cPUm 4 8 16

32 61
Batch size N

10

of 10



Second step: results

® Question 1: What is the appropriate batch size N?

10t

10°

Ratio (GPU / CPU)
3

\

—&- case2869pegase
caso1354pogase

—e- case0241pegase

—e- caseACTIVSg25k

—&- casells

8- case300

pa) 25 27 2
Batch size N

® Question 2: What is the bottleneck in the reduction algorithm?

Absolute time (s)

00

Performance of reduction as function of batch size N
= 1. Forward solve
-2 SpMM

3. Backward solve

%)

U 4 8 16 128 256 512 1024

32 61
Batch size N



References |

Lee, D., Turitsyn, K., Molzahn, D. K., and Roald, L. A. (2020). Feasible path identification in optimal power flow with sequential convex
restriction. |EEE Transactions on Power Systems, 35(5):3648-3659.

Swirydowicz, K., Darve, E., Jones, W., Maack, J., Regev, S., Saunders, M. A., Thomas, S. J., and Peles, S. (2021). Linear solvers for
power grid optimization problems: a review of gpu-accelerated linear solvers. Parallel Computing, page 102870.



	References

