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Motivation: solving optimal power flow problems on GPU architectures
Our research is funded by the ECP project: porting algorithms at exascale

Challenge
Handling unstructured sparsity on SIMD architectures is non trivial

Hardware
GPU centric (SIMD)

Physical model
unstructured
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Idea

=⇒

Compress the graph structure with a nonlinear reduction

min
x,u

f (x, u)

subject to g(x, u) = 0
=⇒ min

u
f (x(u), u)

Why?
• The functional x(u) satisfies implicitly g(x(u), u) = 0!
• The second-order derivatives compress to a dense matrix
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Reduction method: formalism

We denote x ∈ Rnx the state, u ∈ Rnu the control

min
x,u

f (x, u)

subject to g(x, u) = 0

Assumptions:
• Both the objective f : Rnx × Rnu → R and the physical equations

g : Rnx × Rnu → Rnx depend on x and u
• Both f and g have smooth second-order derivatives

Implicit function theorem
Let (x, u) ∈ Rnx × Rnu such that g(x, u) = 0.
If ∇x g(x, u) ∈ Rnx ×nx is invertible, then there exists a local set U ∈ Rnu and an
unique differentiable function x : U → Rnx such that locally

g(x(u), u) = 0 ∀u ∈ U

In practice x(u) is computed iteratively (e.g. with a Newton Raphson algorithm)
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Reduced derivatives: first to second order

Let the reduced functional: fr (u) := f (x(u), u)
We note the Jacobians: Gx = ∇x g ∈ Rnx ×nx , Gu = ∇ug ∈ Rnx ×nu ,

Reduced gradient
The chain rule gives directly:

∇fr (u) = ∇uf − G⊤
u G−⊤

x ∇x f

Complexity: one linear solve

For λ ∈ Rnx , we define the Lagrangian

ℓ(x, u; λ) = f (x, u) + λ⊤g(x, u)

We note W = ∇2ℓ the Hessian of the Lagrangian in the full-space

Reduced Hessian
The reduced Hessian satisfies

∇2fr (u) = Wuu − Wux G−1
x Gu − G⊤

u G−⊤
x Wxu + G⊤

u G−⊤
x Wxx G−1

x Gu

Complexity: nu linear solves
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Implementation

Reduction operation

∇2fr (u) =
[

−G−1
x Gu
I

]⊤ [
Wxx Wxu
Wux Wuu

] [
−G−1

x Gu
I

]
Complexity: either

• nu linear solves if we store the nx × nu dense matrix S = −GuG−1
x

• 2nu linear solves otherwise

Two successive operations:
1. Evaluate the Hessian W in the full space (automatic differentation)
2. Reduce the derivatives in the reduced space (linear algebra)

How-to: efficient linear algebra operations on the GPU
• SpMV/SpMM (sparse matrix - vector/matrix product
• SpSV/SpSM (sparse triangular solve)
• SpRF (sparse refactorization)
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First step: Streamlining the automatic differentation

Factorizing the nonlinearities in the OPF problem (Lee et al., 2020)
There exists a basis ψ(x, u) ∈ Rnb and two sparse matrices M,N such that

f (x, u) = Mψ(x, u) + b , g(x, u) = Nψ(x, u) + c ,

• Evaluate the basis ψ first, then recover f and g with SpMV operations
• We have implemented a GPU kernel for ψ and its adjoint (∇ψ)⊤

Computing the Hessian with forward-over-reverse
The Hessian W is a (super)-sparse matrix

• Find coloring associated to W
• Evaluate W with forward-over-reverse, knowing

(∇f )⊤ = (∇ψ)⊤M⊤ , (∇g)⊤ = (∇ψ)⊤N⊤

Performance: with a dual vector d ∈ Dn
p with p partials, the linear operation M⊤d

translates to a SpMM operation (RHS matrix with size n × (p + 1))
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First step: results

ExaPF: implemented in Julia, using CUDA and KernelAbstractions.jl

Our benchmark cases, ordered by size
(obtained from MATPOWER):

Case nv ne nx nu ncolors
IEEE118 118 186 181 107 27
IEEE300 300 411 530 137 24
PEGASE1354 1,354 1,991 2,447 519 28
PEGASE2869 2,869 4,582 5,227 1,019 35
PEGASE9241 9,241 16,049 17,036 2,889 85
ACTIVSg25K 25,000 32,230 47,246 6,531 36

Protocol
Compare time to evaluate W with

• Reference: JuMP’s AD
(open-source, Julia code)

• our algo on the CPU (ExaPF CPU)
• our algo on the GPU (ExaPF GPU)

case118 case300 case1354 case2869 case9241 case25K

10 1

100

R
at

io
 / 

Ju
M

P

ExaPF (CPU)
ExaPF (CUDA)

Case JuMP (CPU) ExaPF (CPU) ExaPF (CUDA)
IEEE118 0.002 0.0002 0.003
IEEE300 0.003 0.0005 0.003
PEGASE1354 0.019 0.004 0.004
PEGASE2869 0.043 0.013 0.006
PEGASE9241 0.150 0.145 0.029
ACTIVSg25K 0.359 0.105 0.035

Table: Results: evaluation time in seconds
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Second step: reduction operation
We have computed the Hessian W in the first step

∇2fr (u) =
[

−G−1
x Gu
I

]⊤ [
Wxx Wxu
Wux Wuu

] [
−G−1

x Gu
I

]
We should avoid allocating the sensitivity matrix S = −GuG−1

x (size nx × nu)!
Instead, use batched HessMat product ∇2fr (u)V

HessMat kernel: batch adjoint-adjoint reduction
Input: LU factorization, such that PGx Q = L U (2 SpMM, 2 SpSM)
For every matrix V ∈ Rnu×N

1. Solve Z = G−1
x (GuV ) (3 SpMM, 2 SpSM)

2. Evaluate
[

Ψ
Hu

]
=

[
Wxx Wxu
Wux Wuu

] [
Z
V

]
(1 SpMM)

3. Solve Hx = G−⊤
x Ψ (2 SpMM, 2 SpSM)

4. Output ∇2fr (u)V = Hu − GuHx (1 SpMM)

• Gx first factorized on the CPU with KLU,
then refactorized entirely on the GPU with cusolverRF (fast) 1

• div(nu ,N) + 1 HessMat products required to get full ∇2fr (u)
1Credits to Kasia Swirydowicz, PNNL, for the idea and the RF wrapper (Świrydowicz et al., 2021)
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Second step: results
• Question 1: What is the appropriate batch size N?
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• Question 2: What is the bottleneck in the reduction algorithm?
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