
Solving Optimal Power Flow on GPUs in Julia
SIAM Conference on Computational Science and Engineering (CSE21)

François Pacaud, Adrian Maldonado, Michel Schanen, Mihai Anitescu

Argonne National Laboratory
Mathematics and Computer Science Division

March, 3rd

Motivation

ExaSGD project
• Optimizing Stochastic Grid Dynamics at ExaScale
• Leverage new GPU-centric HPC architectures

Aurora
Frontier

• Intel’s Xe compute architecture
• > 1 exaflops

• AMD EPYC processors and
Radeon Instinct GPU

• 1.5 exaflops

2 of 14
.

Today’s challenges in power systems

Figure: The last year had been demanding
for the grid

How to optimize the grid short-term
response, while facing many hazards?

ExaSGD’s targets
• Security constrained Optimal Power Flow
(SC-OPF)

• Model stochasticity (weather, renewable)
and contingencies

• Multiperiod analysis,
with ramping constraints

Our target
Leverage GPUs to solve

- large-scale multiperiod OPF
- with contingencies
- using the Julia language

This work is part of a broader package
implementing a decomposition solver, ProxAL

3 of 14
.

Solving Optimal Power Flow on GPU is easy, huh?

• Graphs are the natural abstraction for
power networks, but come with
unstructured sparsity
• OPF formulate as large-scale nonlinear
nonconvex optimization problems

Large-scale optimization solvers rely on sparse solvers!
State-of-the-art for OPF: Interior Points Method (IPM)

- Newton method with very ill-conditioned linear systems
- Efficient IPM requires indefinite sparse direct inertia revealing solvers
(HSL, Pardiso)...

- Sparse linear libraries on GPU are not mature (yet!)

4 of 14
.

Solving Optimal Power Flow on GPU is easy, huh?

• Graphs are the natural abstraction for
power networks, but come with
unstructured sparsity
• OPF formulate as large-scale nonlinear
nonconvex optimization problems

Large-scale optimization solvers rely on sparse solvers!
State-of-the-art for OPF: Interior Points Method (IPM)

- Newton method with very ill-conditioned linear systems
- Efficient IPM requires indefinite sparse direct inertia revealing solvers
(HSL, Pardiso)...

- Sparse linear libraries on GPU are not mature (yet!)

4 of 14
.

Back to the future: Revisiting reduced-space method for OPF

A brief history of the resolution of OPF (nonlinear optimization only)

• 1962: introduction of the OPF
problem by Carpentier
• 1968: Reduced Gradient method
Dommel and Tinney (1968)
• 1972: Generalized Reduced Gradient
Peschon et al. (1972)
• 1982: SQP method for OPF
Burchett et al. (1982)
• 1984: OPF by Newton approach
Sun et al. (1984)
• 1994: Primal-Dual interior points
Granville (1994)

5 of 14
.

Our plan of action

Figure: Dommel and Tinney (1968)

1. We revisit the reduced space method of
Dommel and Tinney (1968) on the GPU

2. We compute the reduced Hessian using an
adjoint-adjoint method

3. We solve the OPF problem with an
Augmented Lagrangian algorithm

6 of 14
.

Formulating the OPF as a non-linear problem

We adopt the polar formulation

min
z

F (z)

z = (v , θ, pg , qg)
subject to

z[≤ z ≤ z]

G(z) = 0
H(z) ≤ 0

(OPF)

• Objective
- Minimize costs of power generation

F (z) =

ng∑
g=1

cg2 (pg)2 + cg1 pg

• Variables z = (v , θ, pg , qg) ∈ R2×(nb+ng)

- Voltage magnitude v ∈ Rnb

- Voltage angle θ ∈ Rnb

- Active power generation pg ∈ Rng

- Reactive power generation qg ∈ Rng

• Constraints

• Bounds z[≤ z ≤ z]
• Power-flow constraints, ∀i = 1, · · · , nb ,

piinj = vi

∑
j

vj (gij cos (θi − θj) + bij sin (θi − θj)) ,

qiinj = vi

∑
j

vj (gij sin (θi − θj) − bij cos (θi − θj)) .

• Line-flow constraints: (|Sf |2, |St |2) ≤ S2
max

7 of 14
.

Formulating the OPF as a non-linear problem

We adopt the polar formulation

min
z

F (z)

z = (v , θ, pg , qg)

subject to

z[≤ z ≤ z]

G(z) = 0
H(z) ≤ 0

(OPF)

• Objective
- Minimize costs of power generation

F (z) =

ng∑
g=1

cg2 (pg)2 + cg1 pg

• Variables z = (v , θ, pg , qg) ∈ R2×(nb+ng)

- Voltage magnitude v ∈ Rnb

- Voltage angle θ ∈ Rnb

- Active power generation pg ∈ Rng

- Reactive power generation qg ∈ Rng

• Constraints

• Bounds z[≤ z ≤ z]
• Power-flow constraints, ∀i = 1, · · · , nb ,

piinj = vi

∑
j

vj (gij cos (θi − θj) + bij sin (θi − θj)) ,

qiinj = vi

∑
j

vj (gij sin (θi − θj) − bij cos (θi − θj)) .

• Line-flow constraints: (|Sf |2, |St |2) ≤ S2
max

7 of 14
.

Formulating the OPF as a non-linear problem

We adopt the polar formulation

min
z

F (z)

z = (v , θ, pg , qg)
subject to

z[≤ z ≤ z]

G(z) = 0
H(z) ≤ 0

(OPF)

• Objective
- Minimize costs of power generation

F (z) =

ng∑
g=1

cg2 (pg)2 + cg1 pg

• Variables z = (v , θ, pg , qg) ∈ R2×(nb+ng)

- Voltage magnitude v ∈ Rnb

- Voltage angle θ ∈ Rnb

- Active power generation pg ∈ Rng

- Reactive power generation qg ∈ Rng

• Constraints
• Bounds z[≤ z ≤ z]

• Power-flow constraints, ∀i = 1, · · · , nb ,

piinj = vi

∑
j

vj (gij cos (θi − θj) + bij sin (θi − θj)) ,

qiinj = vi

∑
j

vj (gij sin (θi − θj) − bij cos (θi − θj)) .

• Line-flow constraints: (|Sf |2, |St |2) ≤ S2
max

7 of 14
.

Formulating the OPF as a non-linear problem

We adopt the polar formulation

min
z

F (z)

z = (v , θ, pg , qg)
subject to

z[≤ z ≤ z]

G(z) = 0

H(z) ≤ 0

(OPF)

• Objective
- Minimize costs of power generation

F (z) =

ng∑
g=1

cg2 (pg)2 + cg1 pg

• Variables z = (v , θ, pg , qg) ∈ R2×(nb+ng)

- Voltage magnitude v ∈ Rnb

- Voltage angle θ ∈ Rnb

- Active power generation pg ∈ Rng

- Reactive power generation qg ∈ Rng

• Constraints
• Bounds z[≤ z ≤ z]
• Power-flow constraints, ∀i = 1, · · · , nb ,

piinj = vi

∑
j

vj (gij cos (θi − θj) + bij sin (θi − θj)) ,

qiinj = vi

∑
j

vj (gij sin (θi − θj) − bij cos (θi − θj)) .

• Line-flow constraints: (|Sf |2, |St |2) ≤ S2
max

7 of 14
.

Formulating the OPF as a non-linear problem

We adopt the polar formulation

min
z

F (z)

z = (v , θ, pg , qg)
subject to

z[≤ z ≤ z]

G(z) = 0
H(z) ≤ 0

(OPF)

• Objective
- Minimize costs of power generation

F (z) =

ng∑
g=1

cg2 (pg)2 + cg1 pg

• Variables z = (v , θ, pg , qg) ∈ R2×(nb+ng)

- Voltage magnitude v ∈ Rnb

- Voltage angle θ ∈ Rnb

- Active power generation pg ∈ Rng

- Reactive power generation qg ∈ Rng

• Constraints
• Bounds z[≤ z ≤ z]
• Power-flow constraints, ∀i = 1, · · · , nb ,

piinj = vi

∑
j

vj (gij cos (θi − θj) + bij sin (θi − θj)) ,

qiinj = vi

∑
j

vj (gij sin (θi − θj) − bij cos (θi − θj)) .

• Line-flow constraints: (|Sf |2, |St |2) ≤ S2
max

7 of 14
.

Projecting the problem into the powerflow manifold
We can solve the powerflow G(z) = 0 on the GPU (c.f. Adrian’s talk), by
• splitting PQ buses apart from PV and slack buses
• defining the state x = (θpv , θpq , vpq), and the control u = (v ref , vpv , ppv

g)
Powerflow rewrites as G(x, u) = 0
• If ∇xG is non-singular at u, there exists a function x̃ : Rnu → Rnx such that
G(x̃(u), u) = 0 in a neighborhood of u (Implicit function theorem)

Reduced problem
Let f (u) := F (x̃(u), u) and h(u) := H(x̃(u), u). Problem (OPF) is equivalent to

min
u[≤u≤u]

f (u) s.t.
{

x[≤ x(u) ≤ x]

h(u) ≤ 0
(ROPF)

• Dimension of (ROPF) is nu = nref + 2npv (for (OPF): 2× (ng + nb))
• (ROPF) encompasses only operational constraints:
the physical constraints G(x, u) = 0 are implicitly satisfied
• (ROPF) requires to solve the powerflow G(x, u) = 0 each time a new u is passed
• In practice, G(x, u) = 0 is solved using a Newton-Raphson algorithm,
directly on the GPU

8 of 14
.

Projecting the problem into the powerflow manifold
We can solve the powerflow G(z) = 0 on the GPU (c.f. Adrian’s talk), by
• splitting PQ buses apart from PV and slack buses
• defining the state x = (θpv , θpq , vpq), and the control u = (v ref , vpv , ppv

g)
Powerflow rewrites as G(x, u) = 0
• If ∇xG is non-singular at u, there exists a function x̃ : Rnu → Rnx such that
G(x̃(u), u) = 0 in a neighborhood of u (Implicit function theorem)

Reduced problem
Let f (u) := F (x̃(u), u) and h(u) := H(x̃(u), u). Problem (OPF) is equivalent to

min
u[≤u≤u]

f (u) s.t.
{

x[≤ x(u) ≤ x]

h(u) ≤ 0
(ROPF)

• Dimension of (ROPF) is nu = nref + 2npv (for (OPF): 2× (ng + nb))
• (ROPF) encompasses only operational constraints:
the physical constraints G(x, u) = 0 are implicitly satisfied
• (ROPF) requires to solve the powerflow G(x, u) = 0 each time a new u is passed
• In practice, G(x, u) = 0 is solved using a Newton-Raphson algorithm,
directly on the GPU

8 of 14
.

Computing the reduced gradient with the adjoint method

Reduced gradient
Let F : Rnx × Rnu → R a differentiable function depending both on x and u
The function f (u) := F (x̃(u), u) is differentiable, and

∇f (u) = ∇uF︸︷︷︸
nu

+ (∇uG︸︷︷︸
nx×nu

)> λ︸︷︷︸
nx

with (∇xG︸︷︷︸
nx×nx

)>λ = −∇xF︸︷︷︸
nx

λ ∈ Rnx is the first-order adjoint

To evaluate ∇f , we need
• the evaluation of two sparse Jacobians (∇xG,∇uG)
(forward mode autodiff on GPU)
• the resolution of one sparse linear system, with dimension nx × nx
(Direct QR or BICGSTAB)

9 of 14
.

Reduced Hessian: dense, dense, dense!

Can we extract second-order information as well? Yes!
• The first-order counterpart of the powerflow equation G(x, u) = 0 is

Ĝ(x, u,λ) = ∇xF (x, u) +∇xG(x, u)>λ = 0

• We derive two first-order adjoints ψ and z, using the adjoint-adjoint method
(Wang et al., 1992)

Reduced Hessian
Let w ∈ Rnu be a vector. The Hessian-vector product (∇2f)w is equal to

(∇2f)w = (∇2
uuF) w + λ>(∇2

uuG) w + (∇uG)>ψ + (∇2
uxF)>z + λ>(∇2

uxG)>z

with {
(∇xG) z = −(∇uG) w

(∇xG)>ψ = −(∇uĜ)w − (∇x Ĝ)z ,

• Require the resolution of 2nu + 1 linear systems to compute reduced Hessian ∇2f
• Involve only Hessian-vector products!
• Reduced Hessian ∇2f is dense, with dimension nu × nu

10 of 14
.

Reduced Hessian: dense, dense, dense!

Can we extract second-order information as well? Yes!
• The first-order counterpart of the powerflow equation G(x, u) = 0 is

Ĝ(x, u,λ) = ∇xF (x, u) +∇xG(x, u)>λ = 0

• We derive two first-order adjoints ψ and z, using the adjoint-adjoint method
(Wang et al., 1992)

Reduced Hessian
Let w ∈ Rnu be a vector. The Hessian-vector product (∇2f)w is equal to

(∇2f)w = (∇2
uuF) w + λ>(∇2

uuG) w + (∇uG)>ψ + (∇2
uxF)>z + λ>(∇2

uxG)>z

with {
(∇xG) z = −(∇uG) w

(∇xG)>ψ = −(∇uĜ)w − (∇x Ĝ)z ,

• Require the resolution of 2nu + 1 linear systems to compute reduced Hessian ∇2f
• Involve only Hessian-vector products!
• Reduced Hessian ∇2f is dense, with dimension nu × nu

10 of 14
.

Augmented Lagrangian formulation

Original reduced problem

min
u[≤u≤u]

f (u) s.t. h(u) ≤ 0

• 1 objective, m = 2nl + nx constraints
• Computing the reduced gradient ∇f
and reduced Jacobian ∇h: 1 + m
adjoint solves
• Computing the reduced Hessian ∇2f
and reduced Hessian y>∇2h:
(2nu + 1)(m + 1) adjoint solves

Augmented Lagrangian

min
u[≤u≤u]

f (u) + y>(h(u)− s) +
ρ

2
‖h(u)− s‖2

s.t. s ≤ 0

• 1 objective, only box constraints
• Computing the gradient involves only
transpose-Jacobian vector product in
the full-space and 1 adjoint solve

• Reduced Hessian computed with
2nu + m + 1 adjoint solves

11 of 14
.

Augmented Lagrangian formulation

Original reduced problem

min
u[≤u≤u]

f (u) s.t. h(u) ≤ 0

• 1 objective, m = 2nl + nx constraints
• Computing the reduced gradient ∇f
and reduced Jacobian ∇h: 1 + m
adjoint solves
• Computing the reduced Hessian ∇2f
and reduced Hessian y>∇2h:
(2nu + 1)(m + 1) adjoint solves

Augmented Lagrangian

min
u[≤u≤u]

f (u) + y>(h(u)− s) +
ρ

2
‖h(u)− s‖2

s.t. s ≤ 0

• 1 objective, only box constraints
• Computing the gradient involves only
transpose-Jacobian vector product in
the full-space and 1 adjoint solve

• Reduced Hessian computed with
2nu + m + 1 adjoint solves

11 of 14
.

Implementation

We have implemented the reduced space method in Julia

https://github.com/exanauts/ExaPF.jl

using the excellent CUDA.jl (Besard et al., 2018)

Powerflow G(x, u) = 0
• Newton-Raphson algorithm, implemented fully on the GPU
• Inversion of Newton-Step (∇xGk)dk = −Gk using either

- Sparse QR (CUSOLVER)
- Iterative BICGSTAB with Krylov.jl (Montoison et al., 2020)

• AutoDiff implemented with ForwardDiff.jl (runs on GPU thanks to (Revels et al., 2018))

Optimal powerflow in the reduced-space (ROPF)
• Augmented Lagrangian algorithm, following Conn et al. (1991); Arreckx et al. (2016)
• Subproblems solved either with:

- Trust-region conjugate gradient (Tron)
- Interior-point, using the inertia-free solver MadNLP (Shin et al., 2020) (https://github.com/sshin23/MadNLP.jl)

• Factorization of dense KKT matrix deported on the GPU, using Lapack-CUDA.

12 of 14
.

https://github.com/exanauts/ExaPF.jl

Results: two take-aways

1. Inner iterations
10x speed-up when factorizing the (dense) Hessian matrix on the GPU

Opt. Solver Linear Algebra #it linear solver (s) callbacks (s)
MadNLP Lapack (CPU) 62 1946. 2705.
MadNLP Lapack (GPU) 62 195. 2688.

Table: We compare the time to solve one AugLag subproblem for case9241pegase
(Hessian with dimension 12, 131× 12, 131)

2. Outer iterations
Augmented Lagrangian algorithm is not (yet?) competitive with full-space IPM

Case # outer it # Hess. eval tot. time (s) time / Hessian
case118ieee 10 271 3.0 0.011
case300ieee 7 167 6.7 0.040

case1354pegase 20[666 334.4 0.50

Table: Resolution time of (ROPF) with AugLag, using MadNLP+LapackGPU for the subproblems
Time to evaluate one Hessian ≈ O(n2u)

13 of 14
.

Results: two take-aways

1. Inner iterations
10x speed-up when factorizing the (dense) Hessian matrix on the GPU

Opt. Solver Linear Algebra #it linear solver (s) callbacks (s)
MadNLP Lapack (CPU) 62 1946. 2705.
MadNLP Lapack (GPU) 62 195. 2688.

Table: We compare the time to solve one AugLag subproblem for case9241pegase
(Hessian with dimension 12, 131× 12, 131)

2. Outer iterations
Augmented Lagrangian algorithm is not (yet?) competitive with full-space IPM

Case # outer it # Hess. eval tot. time (s) time / Hessian
case118ieee 10 271 3.0 0.011
case300ieee 7 167 6.7 0.040

case1354pegase 20[666 334.4 0.50

Table: Resolution time of (ROPF) with AugLag, using MadNLP+LapackGPU for the subproblems
Time to evaluate one Hessian ≈ O(n2u)

13 of 14
.

Conclusion

• Achievements
• We have revisited the reduced gradient method of Dommel and Tinney,

with second-order
• We have developed a custom Augmented Lagrangian algorithm

• Perspective
At the moment, only the computation of the Newton step is deported on the GPU
→ TODO: Move all the algorithm on the GPU

• Move the evaluation of the reduced Hessian fully on the GPU, with AD
• Adapt the Augmented Lagrangian to GPU architectures

Reduced space’s wager:
Would you bet 10$ on reduced space/GPU, versus full space/CPU?

Slides available at: https://frapac.github.io/pdf/SIAM_CSE21.pdf

14 of 14
.

https://frapac.github.io/pdf/SIAM_CSE21.pdf

References I

Arreckx, S., Lambe, A., Martins, J. R., and Orban, D. (2016). A matrix-free augmented lagrangian algorithm with application to
large-scale structural design optimization. Optimization and Engineering, 17(2):359–384.

Besard, T., Foket, C., and De Sutter, B. (2018). Effective extensible programming: unleashing julia on gpus. IEEE Transactions on
Parallel and Distributed Systems, 30(4):827–841.

Burchett, R., Happ, H., and Wirgau, K. (1982). Large scale optimal power flow. IEEE Transactions on Power Apparatus and Systems,
(10):3722–3732.

Conn, A. R., Gould, N. I., and Toint, P. (1991). A globally convergent augmented lagrangian algorithm for optimization with general
constraints and simple bounds. SIAM Journal on Numerical Analysis, 28(2):545–572.

Dommel, H. and Tinney, W. (1968). Optimal Power Flow Solutions. IEEE Transactions on Power Apparatus and Systems,
PAS-87(10):1866–1876.

Granville, S. (1994). Optimal reactive dispatch through interior point methods. IEEE Transactions on power systems, 9(1):136–146.

Montoison, A., Orban, D., and contributors (2020). Krylov.jl: A Julia basket of hand-picked Krylov methods.
https://github.com/JuliaSmoothOptimizers/Krylov.jl.

Peschon, J., Bree, D. W., and Hajdu, L. P. (1972). Optimal power-flow solutions for power system planning. Proceedings of the IEEE,
60(1):64–70.

Revels, J., Besard, T., Churavy, V., De Sutter, B., and Vielma, J. P. (2018). Dynamic automatic differentiation of gpu broadcast kernels.
arXiv preprint arXiv:1810.08297.

Shin, S., Coffrin, C., Sundar, K., and Zavala, V. M. (2020). Graph-based modeling and decomposition of energy infrastructures. arXiv
preprint arXiv:2010.02404.

Sun, D. I., Ashley, B., Brewer, B., Hughes, A., and Tinney, W. F. (1984). Optimal power flow by newton approach. IEEE Transactions on
Power Apparatus and systems, (10):2864–2880.

Wang, Z., Navon, I. M., Le Dimet, F.-X., and Zou, X. (1992). The second order adjoint analysis: theory and applications. Meteorology
and atmospheric physics, 50(1):3–20.

	References

