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Motivation

ExaSGD project
• Optimizing Stochastic Grid Dynamics at ExaScale
• Leverage new GPU-centric HPC architectures

Aurora
Frontier

• Intel’s Xe compute architecture
• > 1 exaflops

• AMD EPYC processors and
Radeon Instinct GPU

• 1.5 exaflops
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Today’s challenges in power systems

Figure: The last year had been demanding
for the grid

How to optimize the grid short-term
response, while facing many hazards?

ExaSGD’s targets
• Security constrained Optimal Power Flow
(SC-OPF)

• Model stochasticity (weather, renewable)
and contingencies

• Multiperiod analysis,
with ramping constraints

Our target
Leverage GPUs to solve

- large-scale multiperiod OPF
- with contingencies
- using the Julia language

This work is part of a broader package
implementing a decomposition solver, ProxAL
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Solving Optimal Power Flow on GPU is easy, huh?

• Graphs are the natural abstraction for
power networks, but come with
unstructured sparsity
• OPF formulate as large-scale nonlinear
nonconvex optimization problems

Large-scale optimization solvers rely on sparse solvers!
State-of-the-art for OPF: Interior Points Method (IPM)

- Newton method with very ill-conditioned linear systems
- Efficient IPM requires indefinite sparse direct inertia revealing solvers
(HSL, Pardiso)...

- Sparse linear libraries on GPU are not mature (yet!)
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Back to the future: Revisiting reduced-space method for OPF

A brief history of the resolution of OPF (nonlinear optimization only)

• 1962: introduction of the OPF
problem by Carpentier
• 1968: Reduced Gradient method
Dommel and Tinney (1968)
• 1972: Generalized Reduced Gradient
Peschon et al. (1972)
• 1982: SQP method for OPF
Burchett et al. (1982)
• 1984: OPF by Newton approach
Sun et al. (1984)
• 1994: Primal-Dual interior points
Granville (1994)
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Our plan of action

Figure: Dommel and Tinney (1968)

1. We revisit the reduced space method of
Dommel and Tinney (1968) on the GPU

2. We compute the reduced Hessian using an
adjoint-adjoint method

3. We solve the OPF problem with an
Augmented Lagrangian algorithm
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Formulating the OPF as a non-linear problem

We adopt the polar formulation

min
z

F (z)

z = (v , θ, pg , qg )
subject to

z[ ≤ z ≤ z]

G(z) = 0
H(z) ≤ 0

(OPF)

• Objective
- Minimize costs of power generation

F (z) =

ng∑
g=1

cg2 (pg )2 + cg1 pg

• Variables z = (v , θ, pg , qg ) ∈ R2×(nb+ng )

- Voltage magnitude v ∈ Rnb

- Voltage angle θ ∈ Rnb

- Active power generation pg ∈ Rng

- Reactive power generation qg ∈ Rng

• Constraints

• Bounds z[ ≤ z ≤ z]
• Power-flow constraints, ∀i = 1, · · · , nb ,

piinj = vi

∑
j

vj (gij cos (θi − θj ) + bij sin (θi − θj )) ,

qiinj = vi

∑
j

vj (gij sin (θi − θj ) − bij cos (θi − θj )) .

• Line-flow constraints: (|Sf |2, |St |2) ≤ S2
max
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Projecting the problem into the powerflow manifold
We can solve the powerflow G(z) = 0 on the GPU (c.f. Adrian’s talk), by
• splitting PQ buses apart from PV and slack buses
• defining the state x = (θpv , θpq , vpq), and the control u = (v ref , vpv , ppv

g )
Powerflow rewrites as G(x, u) = 0
• If ∇xG is non-singular at u, there exists a function x̃ : Rnu → Rnx such that
G(x̃(u), u) = 0 in a neighborhood of u (Implicit function theorem)

Reduced problem
Let f (u) := F (x̃(u), u) and h(u) := H(x̃(u), u). Problem (OPF) is equivalent to

min
u[≤u≤u]

f (u) s.t.
{

x[ ≤ x(u) ≤ x]

h(u) ≤ 0
(ROPF)

• Dimension of (ROPF) is nu = nref + 2npv (for (OPF): 2× (ng + nb))
• (ROPF) encompasses only operational constraints:
the physical constraints G(x, u) = 0 are implicitly satisfied
• (ROPF) requires to solve the powerflow G(x, u) = 0 each time a new u is passed
• In practice, G(x, u) = 0 is solved using a Newton-Raphson algorithm,
directly on the GPU
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Computing the reduced gradient with the adjoint method

Reduced gradient
Let F : Rnx × Rnu → R a differentiable function depending both on x and u
The function f (u) := F (x̃(u), u) is differentiable, and

∇f (u) = ∇uF︸︷︷︸
nu

+ (∇uG︸︷︷︸
nx×nu

)> λ︸︷︷︸
nx

with (∇xG︸︷︷︸
nx×nx

)>λ = −∇xF︸︷︷︸
nx

λ ∈ Rnx is the first-order adjoint

To evaluate ∇f , we need
• the evaluation of two sparse Jacobians (∇xG,∇uG)
(forward mode autodiff on GPU)
• the resolution of one sparse linear system, with dimension nx × nx
(Direct QR or BICGSTAB)
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Reduced Hessian: dense, dense, dense!

Can we extract second-order information as well? Yes!
• The first-order counterpart of the powerflow equation G(x, u) = 0 is

Ĝ(x, u,λ) = ∇xF (x, u) +∇xG(x, u)>λ = 0

• We derive two first-order adjoints ψ and z, using the adjoint-adjoint method
(Wang et al., 1992)

Reduced Hessian
Let w ∈ Rnu be a vector. The Hessian-vector product (∇2f )w is equal to

(∇2f )w = (∇2
uuF ) w + λ>(∇2

uuG) w + (∇uG)>ψ + (∇2
uxF )>z + λ>(∇2

uxG)>z

with {
(∇xG) z = −(∇uG) w

(∇xG)>ψ = −(∇uĜ)w − (∇x Ĝ)z ,

• Require the resolution of 2nu + 1 linear systems to compute reduced Hessian ∇2f
• Involve only Hessian-vector products!
• Reduced Hessian ∇2f is dense, with dimension nu × nu
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Ĝ(x, u,λ) = ∇xF (x, u) +∇xG(x, u)>λ = 0

• We derive two first-order adjoints ψ and z, using the adjoint-adjoint method
(Wang et al., 1992)

Reduced Hessian
Let w ∈ Rnu be a vector. The Hessian-vector product (∇2f )w is equal to

(∇2f )w = (∇2
uuF ) w + λ>(∇2

uuG) w + (∇uG)>ψ + (∇2
uxF )>z + λ>(∇2

uxG)>z

with {
(∇xG) z = −(∇uG) w

(∇xG)>ψ = −(∇uĜ)w − (∇x Ĝ)z ,
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Augmented Lagrangian formulation

Original reduced problem

min
u[≤u≤u]

f (u) s.t. h(u) ≤ 0

• 1 objective, m = 2nl + nx constraints
• Computing the reduced gradient ∇f
and reduced Jacobian ∇h: 1 + m
adjoint solves
• Computing the reduced Hessian ∇2f
and reduced Hessian y>∇2h:
(2nu + 1)(m + 1) adjoint solves

Augmented Lagrangian

min
u[≤u≤u]

f (u) + y>(h(u)− s) +
ρ

2
‖h(u)− s‖2

s.t. s ≤ 0

• 1 objective, only box constraints
• Computing the gradient involves only
transpose-Jacobian vector product in
the full-space and 1 adjoint solve

• Reduced Hessian computed with
2nu + m + 1 adjoint solves
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Implementation

We have implemented the reduced space method in Julia

https://github.com/exanauts/ExaPF.jl

using the excellent CUDA.jl (Besard et al., 2018)

Powerflow G(x, u) = 0
• Newton-Raphson algorithm, implemented fully on the GPU
• Inversion of Newton-Step (∇xGk )dk = −Gk using either

- Sparse QR (CUSOLVER)
- Iterative BICGSTAB with Krylov.jl (Montoison et al., 2020)

• AutoDiff implemented with ForwardDiff.jl (runs on GPU thanks to (Revels et al., 2018))

Optimal powerflow in the reduced-space (ROPF)
• Augmented Lagrangian algorithm, following Conn et al. (1991); Arreckx et al. (2016)
• Subproblems solved either with:

- Trust-region conjugate gradient (Tron)
- Interior-point, using the inertia-free solver MadNLP (Shin et al., 2020) (https://github.com/sshin23/MadNLP.jl)

• Factorization of dense KKT matrix deported on the GPU, using Lapack-CUDA.
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Results: two take-aways

1. Inner iterations
10x speed-up when factorizing the (dense) Hessian matrix on the GPU

Opt. Solver Linear Algebra #it linear solver (s) callbacks (s)
MadNLP Lapack (CPU) 62 1946. 2705.
MadNLP Lapack (GPU) 62 195. 2688.

Table: We compare the time to solve one AugLag subproblem for case9241pegase
(Hessian with dimension 12, 131× 12, 131)

2. Outer iterations
Augmented Lagrangian algorithm is not (yet?) competitive with full-space IPM

Case # outer it # Hess. eval tot. time (s) time / Hessian
case118ieee 10 271 3.0 0.011
case300ieee 7 167 6.7 0.040

case1354pegase 20[ 666 334.4 0.50

Table: Resolution time of (ROPF) with AugLag, using MadNLP+LapackGPU for the subproblems
Time to evaluate one Hessian ≈ O(n2u)
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Conclusion

• Achievements
• We have revisited the reduced gradient method of Dommel and Tinney,

with second-order
• We have developed a custom Augmented Lagrangian algorithm

• Perspective
At the moment, only the computation of the Newton step is deported on the GPU
→ TODO: Move all the algorithm on the GPU

• Move the evaluation of the reduced Hessian fully on the GPU, with AD
• Adapt the Augmented Lagrangian to GPU architectures

Reduced space’s wager:
Would you bet 10$ on reduced space/GPU, versus full space/CPU?

Slides available at: https://frapac.github.io/pdf/SIAM_CSE21.pdf
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