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Who are we?

• An international team looking at the future of nonlinear programming

Outline: how to solve complementarity problems with interior-point?

1. We give a brief recall of programs with complementarity constraints
(and why they are difficult)

2. We present NCL, a mixed augmented-Lagrangian/interior-point algorithm
3. We test the method on large-scale SC-OPF instances

and present recent numerical results
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Part I: Complementarity constraints

• What is a program with complementarity constraints?
• How to solve them using interior-point?
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Nonlinear program with complementarity constraints
Mathematical program with complementarity constraints (MPCC)
Let f : Rn → R, G : Rn → Rm and H : Rn → Rm.
The MPCC is here defined as:

min
x∈Rn

f (x)

s.t. 0 ≤ G(x) ⊥ H(x) ≥ 0

Notation 0 ≤ x ⊥ y ≥ 0 stands for:

0 ≤ xi and 0 ≤ yi and xi yi = 0 ∀i = 1, · · · , m

NLP reformulation
MPCC is equivalent to the NLP:

min
x∈Rn

f (x)

s.t. G(x) ≥ 0 , H(x) ≥ 0
Gi (x)Hi (x) ≤ 0 ∀i = 1, · · · , m

• The previous NLP is degenerate, in the sense that MFCQ fails at all x
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Optimality conditions
• Active sets:

IG = {i ∈ {1, · · · , m} | Gi (x) = 0} , IH = {i ∈ {1, · · · , m} | Hi (x) = 0} .

• MPCC Lagrangian:
L(x , λG , λH) := f (x) − λ⊤

G G(x) − λ⊤
H H(x) .

Stationarity conditions

Weak stationary ∇x L(x , λ) = 0 with

(λG)i = 0 for i /∈ IG and (λH)i = 0 for i /∈ IH

Clarke stationary: weak stationary and

(λG)i (λH)i ≥ 0 ∀i ∈ IG ∩ IH

Mordukhovich stationary: Clarke stationary and

Either
(

(λG)i > 0 and (λH)i > 0
)

or (λG)i (λH)i = 0 ∀i ∈ IG∩IH

Strong stationary: Mordukhovich stationary and

(λG)i ≥ 0 and (λH)i ≥ 0 ∀i ∈ IG ∩ IH
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Usual solution methods

• Relaxation: For τ > 0, replace complementarity constraints by

Gi (x)Hi (x) ≤ τ , ∀i = 1, · · · , m

• Smoothening: Use a smooth approximation parameterized by ε > 0:

Φε

(
Gi (x), Hi (x)

)
= 0 ∀i = 1, · · · , m

• Exact penalty: Move the complementarity constraints in the objective:

min
x∈Rn

f (x) + νG(x)⊤H(x)

s.t. G(x) ≥ 0 , H(x) ≥ 0

and solve resulting problem with interior-point

R. Fletcher and S. Leyffer. "Solving mathematical programs with complementarity constraints as nonlinear programs." Optimization Methods and Software6 of 18
.



Part II: NCL
• How to mix interior-point with an Augmented Lagrangian method?
• Is the method more complex than vanilla interior-point?

7 of 18
.



Augmented Lagrangian method

Nonlinear program

min
x∈Rn

f (x) subject to c(x) = 0 , x ≥ 0

For ye ∈ Rm, ρ > 0, we define the Augmented Lagrangian subproblem:

min
x∈Rn

f (x) + y⊤
e c(x) + ρ

2 ∥c(x)∥2 subject to x ≥ 0
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Introducing the NCL algorithm
NCL reformulates the Auglag’s subproblems as constrained optimization problems

At iteration k, the algorithm solves:

min
x,r

f (x) − (y e
k )⊤r + ρk

2 ∥r∥2

subject to c(x) + r = 0 , x ≥ 0
(NCLk)

• Subproblem (NCLk) is always feasible, solvable by IPM!
• Only the objective changes between two Auglag iterations
• Regularization r stabilizes internal IPM iterations

NCL algorithm ≡ Auglag algorithm

• Solve (NCLk) to get (xk , rk), for a tolerance ωk
• Update parameters as

- If ∥c(xk)∥ ≤ ηk , set y e
k+1 = y e

k − ρk rk
- Else ρk+1 = 10 × ρk .

D. Ma, KL. Judd, D. Orban and MA Saunders. "Stabilized optimization via an NCL algorithm". 9 of 18
.



Writing the KKT system
Compared to raw IPM, each NCL’s subproblem has an additional variable r

KKT system: NCL
NCL search direction is computed by solving the KKT system:[W + Σx 0 J⊤

0 ρk I I
J I 0

] [∆x
∆r
∆y

]
= −

[n1
n2
n3

]
(K2)

Note that the NCL Jacobian is always full row-rank
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Condensation strategy

Step 1: removing ∆r
Eliminate ∆r = (n2 − ∆y)/ρk :[

W + Σx J⊤

J − 1
ρk

] [
∆x
∆y

]
= −

[
n1

n3 − 1
ρk

n2

]
(K2r )

Step 2: removing ∆y
Eliminate ∆y = n2 − ρk(n3 − J∆x):

(W + Σx + ρkJ⊤J)∆x = J⊤(n3 + ρk r1) − r2 (K1s)

The original problem is nonconvex, hence:
• K2r is (almost) SQD (LDL)
• K1s is (almost) positive definite (Cholesky)
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Safeguarding convergence for degenerate problems
Known fact: Auglag is more robust than interior-point

Property 1: Problem with redundant constraints
With the dual regularization r , the subproblem (NCLk) automatically
satisfy LICQ

Property 2: Infeasible problems
For infeasible problems, NCL converges to a stationary point of
the nonlinear least-square problem:

min
x,r

ρ

2 ∥r∥2 subject to c(x) + r = 0 , x ≥ 0

Property 3: Problems with complementarity constraints (MPCC)
For MPCC problem, Auglag converges to a strong stationary point
(under specific technical assumptions)

AF. Izmailov, MV. Solodov, and EI. Uskov. "Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints,
including problems with complementarity constraints." SIAM Journal on Optimization 22 (2012) 12 of 18
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Part III: Solving large-scale SCOPF

• How to formulate SCOPF with complementarity constraints?
• How fast can NCL solve the SC-OPF problem?
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An application to Corrective Security-Constrained OPF
Suppose we have K potential contingencies, with for each k = 1, · · · , K ,

Automatic generation control system (droop control)

pk
g = min

(
max

(
p0

g + αg ∆k , p
g

)
, pg

)
or, equivalently,

ρk
g,+ − ρk

g,− = pk
g − (p0

g + αg ∆)

0 ≤ ρk
g,− ⊥ pg − pk

g ≥ 0

0 ≤ ρk
g,+ ⊥ pk

g − p
g

≥ 0

Voltage control (PV/PQ switches)

νk
+ − νk

− = v k
m − v 0

m

0 ≤ νk
− ⊥ qg − qk

g ≥ 0

0 ≤ νk
+ ⊥ qk

g − q
g

≥ 0

I. Aravena et al. "Recent developments in security-constrained AC optimal power flow: Overview of challenge 1 in the ARPA-E grid optimization competition."
Operations research 71 (2023) 14 of 18
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Contingency screening
Objective: Detect all the infeasible contingencies

Let x0 be a base case solution, xk the variables at contingency k
We abstract the complementarity constraints as:

0 ≤ τL
k (x0, xk) ⊥ τU

k (xk) ≥ 0

Feasibility problem

min
xk

0 subject to

{
ck(xk) = 0 , xk ≥ 0

0 ≤ τL
k (x0, xk) ⊥ τU

k (xk) ≥ 0

Using a smooth reformulation of the complementarity cons., NCL solves the
nonlinear least-square problem (with MPCC), for rk = (rc,k , rl,k , rr,k , rs,k),

min
xk ,rk

1
2∥rk∥2 subject to


ck(xk) + rc,k = 0 , xk ≥ 0

0 ≤ τL(x0, xk) + rl,k

0 ≤ τR(xk) + rr,k

τL(x0, xk)⊤τR(xk) + rs,k ≤ 0
FE. Curtis, DK. Molzahn, S. Tu, A. Wächter, E. Wei, E. Wong.
"A decomposition algorithm with fast identification of critical contingencies for large-scale security-constrained AC-OPF." Operations Research 71 (2023) 15 of 18
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SCOPF problem
Objective: adjusting the base case x0

We keep the Ks most important contingencies in the problem
(generally, Ks ≈ 10)

Corrective SCOPF

min
x0,x1,··· ,xKs

f (x0)

subject to c0(x0) = 0 , x0 ≥ 0
ck(xk) = 0 , xk ≥ 0 ∀k = 1, · · · , Ks

0 ≤ τL
k (x0, xk) ⊥ τU

k (xk) ≥ 0 ∀k = 1, · · · , Ks

• Complicated problems with many complementarity constraints
• Fortunately, NCL is also here to help!
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(Preliminary) Numerical results on corrective SCOPF

Observations
• Both Knitro and Ipopt don’t converge on these instances
• NCL converges to stationary points
• Code runs on the GPU, but is less robust than on the CPU – yet

(ill-conditioning in K1s)
• If convergence achieved, we observe again a 10x speed-up w.r.t. the CPU

NCL+K2r+MA27 NCL+K2r+CUDSS NCL+K1s+CUDSS
K st obj it linsolve total st obj it linsolve total st obj it linsolve total

1354pegase 16 1 7.4 282 235.3 259.7 -3 7.4 295 30.0 35.0 1 7.4 231 17.9 21.1
ACTIVSg2000 8 1 122.9 296 543.2 564.1 1 122.9 314 29.1 33.9 -3 122.9 429 31.7 37.0
2869pegase 8 -3 13.4 331 305.0 340.0 1 13.4 211 21.5 26.7 -3 13.4 244 19.1 23.2

Table: st: return status (1 if locally optimal, -3 if step is becoming too small)
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Conclusion

Take away

1. We obtain promising (and unexpected) results
when solving MPCC in the large-scale regime

2. More rigorous analysis is under way
(we should compare with an exact-penalty based approach)
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