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Who are we?

® An international team looking at the future of nonlinear programming

-

Outline: how to solve complementarity problems with interior-point?

1. We give a brief recall of programs with complementarity constraints
(and why they are difficult)

2. We present NCL, a mixed augmented-Lagrangian/interior-point algorithm

3. We test the method on large-scale SC-OPF instances
and present recent numerical results
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Part I: Complementarity constraints

® What is a program with complementarity constraints?

® How to solve them using interior-point?
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Nonlinear program with complementarity constraints
Mathematical program with complementarity constraints (MPCC)

Llet f:R" - R, G:R" - R™ and H:R" — R™.
The MPCC is here defined as:
2 70

st. 0<G(x) L H(x)>0
Notation 0 < x L y > 0 stands for:
0<xi and 0<y;, and xy;=0 Vi=1--- 'm

NLP reformulation
MPCC is equivalent to the NLP:

min f(x)

x€RN
st. G(x)>0, H(x)>0
G,'(X)H;(X) < 0 Vi= 1, e ,Mm

® The previous NLP is degenerate, in the sense that MFCQ fails at all x
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Optimality conditions
® Active sets:
le={ie{l,--- ,m}|G(x)=0}, Ih={ie{l,---,m}]|H(x)=0}.
® MPCC Lagrangian:
L(x, X6, An) == F(x) = A G(x) — AL H(X) .

Stationarity conditions
Weak stationary V,L(x,A) =0 with
(Ae)i=0 for i¢ls and (Ay)i=0 for ié¢ly
Clarke stationary: weak stationary and
(Ae)i(An)i =0 VielgNly
Mordukhovich stationary: Clarke stationary and
Either(()\g),- > 0and ()i > o) or Ae)i(A)i =0 Vi€ lonly
Strong stationary: Mordukhovich stationary and

(Ag)i >0 and ()\H)i >0 Vielsnly
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Usual solution methods

® Relaxation: For 7 > 0, replace complementarity constraints by
GH(x) <7, Vi=1l---,m
® Smoothening: Use a smooth approximation parameterized by € > 0:
®.(Gi(x),Hi(x)) =0 Vi=1,---.m
® Exact penalty: Move the complementarity constraints in the objective:
:2;13 f(x) +vG(x)" H(x)
st. G(x)>0, H(x)>0

and solve resulting problem with interior-point

R. Fletcher and S. Leyffer. "Solving mathematical programs with complementarity constraints as nonlinear programs." Optimization Methods and Software



Part II: NCL

® How to mix interior-point with an Augmented Lagrangian method?
® |s the method more complex than vanilla interior-point?

7 0of 18



Augmented Lagrangian method

Nonlinear program

m]ilg f(x) subjectto c¢(x)=0, x>0
x€ERN

For ye € R™ p > 0, we define the Augmented Lagrangian subproblem:

rg}ier f(x) + ve c(x) + §||c(x)||2 subject to x >0
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Introducing the NCL algorithm

NCL reformulates the Auglag's subproblems as constrained optimization problems

At iteration k, the algorithm solves:

min £(x) = () "+ 21 r|

(NCLy)
subject to c¢(x)+r=0, x>0

® Subproblem (NCLy) is always feasible, solvable by IPM!
® Only the objective changes between two Auglag iterations

® Regularization r stabilizes internal IPM iterations

NCL algorithm = Auglag algorithm

® Solve (NCLy) to get (x«, r«), for a tolerance wy
® Update parameters as

- IF [leGa)ll < mk, set v =Yg — prrk
- Else py1 = 10 X pi.

D. Ma, KL. Judd, D. Orban and MA Saunders. "Stabilized optimization via an NCL algorithm". 9ofls



Writing the KKT system

Compared to raw IPM, each NCL's subproblem has an additional variable r

KKT system: NCL

NCL search direction is computed by solving the KKT system:

W43, 0 J'] [Ax m
0 prl 1 Ar| =— [n (Kz)
J I 0 Ay n3

Note that the NCL Jacobian is always full row-rank
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Condensation strategy

Step 1: removing Ar

Eliminate Ar = (n2 — Ay)/p«:

R

m

== [,,3 _ an] (Kar)

_1
Pk
Step 2: removing Ay
Eliminate Ay = ny — pi(n3 — JAX):
(W4 + pud NAx = I (n3 + pxni) — 1 (Kis)
The original problem is nonconvex, hence:

® K, is (almost) SQD (LDL)
® Kis is (almost) positive definite (Cholesky)
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Safeguarding convergence for degenerate problems

Known fact: Auglag is more robust than interior-point

Property 1: Problem with redundant constraints

With the dual regularization r, the subproblem (NCL) automatically
satisfy LICQ

Property 2: Infeasible problems

For infeasible problems, NCL converges to a stationary point of
the nonlinear least-square problem:

min §||r||2 subjectto ¢(x)+r=0, x>0

B

Property 3: Problems with complementarity constraints (MPCC)

For MPCC problem, Auglag converges to a strong stationary point
(under specific technical assumptions)

AF. Izmailov, MV. Solodov, and EIl. Uskov. "Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate conf&raoiptl;a
including problems with complementarity constraints." SIAM Journal on Optimization 22 (2012)



Part Ill: Solving large-scale SCOPF

® How to formulate SCOPF with complementarity constraints?
® How fast can NCL solve the SC-OPF problem?
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An application to Corrective Security-Constrained OPF
Suppose we have K potential contingencies, with for each k =1,--- | K,

Automatic generation control system (droop control)

pg = min (max (pg + agAk7 Eg)7 Eg)
or, equivalently,
Pa — P = Ps — (Pg + )
0<pg Lp,—pg>0
0<pg+Lpf—p >0

Voltage control (PV/PQ switches)

k k _  k 0
Vi — VL =V, — Vp

0<vX1g,—qgs>0
oguing—ggzo

|. Aravena et al. "Recent developments in security-constrained AC optimal power flow: Overview of challenge 1 in the ARPA-E grid optimization competiri'%n

Operations research 71 (2023)

of 18



Contingency screening

Objective: Detect all the infeasible contingencies

Let xop be a base case solution, x, the variables at contingency k
We abstract the complementarity constraints as:

0 < 74 (x0, k) L 7 (x¢) > 0

Feasibility problem

a(x) =0, x>0
min 0 subject to . v
g 0 < 7 (x0, %) L 7 (xx) >0

Using a smooth reformulation of the complementarity cons., NCL solves the
nonlinear least-square problem (with MPCC), for rc = (re,k, fiky Fr ks Fs,k),

ck(xk) +rek =0, x>0
0 < 7h(x0, Xk) + 11k
0< TR(Xk) + ok

(%0, xk) T TR (xK) + rex < 0

1
min §||rk||2 subject to

Xk Tk

FE. Curtis, DK. Molzahn, S. Tu, A. Wiachter, E. Wei, E. Wong.

"A decomposition algorithm with fast identification of critical contingencies for large-scale security-constrained AC-OPF." Operations Research 71 (2023) 1Horis



SCOPF problem

Objective: adjusting the base case xp

We keep the Ks most important contingencies in the problem
(generally, K =~ 10)

Corrective SCOPF

min  f(xo)
X0,xq,++ ,XKg

subject to  co(x) =0, x >0
Ck(Xk)ZO, xk >0 Vk=1,---,K;s
OST,’Q(Xo,xk)J_T,fI(Xk)ZO Vk=1,---,K;

® Complicated problems with many complementarity constraints

® Fortunately, NCL is also here to help!
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(Preliminary) Numerical results on corrective SCOPF

® Both Knitro and lpopt don't converge on these instances

® NCL converges to stationary points

Code runs on the GPU, but is less robust than on the CPU — yet
(ill-conditioning in Kis)

® If convergence achieved, we observe again a 10x speed-up w.r.t. the CPU

‘ NCL+K2r+MA27 NCL+K2r+CUDSS NCL+K1s+CUDSS
K| st obj it linsolve  total | st obj it linsolve total | st obj it linsolve total

1354pegase 16| 1 7.4 282 2353 259.7 | -3 7.4 295 300 350 1 7.4 231 179 211
ACTIVSg2000 8 | 1 1229 296 5432 5641 | 1 1229 314 201 339 | -3 1229 429 317 37.0
2869pegase 8|-3 134 331 305.0 340.0 | 1 134 211 215 26.7 | -3 13.4 244 191 232

Table: st: return status (1 if locally optimal, -3 if step is becoming too small)
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Conclusion

1. We obtain promising (and unexpected) results
when solving MPCC in the large-scale regime
2. More rigorous analysis is under way
(we should compare with an exact-penalty based approach)
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