GPU-accelerated interior-point solvers
Are second-order methods relevant on GPUs?

Francois Pacaud

Centre Automatique et Systémes (CAS), Mines Paris - PSL

SPOT Seminar
February 2nd 2026

Who are we?

https://madsuite.org/

2L

® Alexis Montoison @ Argonne National Laboratory
® Francois Pacaud @ Mines Paris-PSL
® Sungho Shin @ MIT

2 of 3

https://madsuite.org/

GPU-accelerated optimization?

® GPUs are now broadly available in scientific computing

® In optimization, first-order methods are getting the most traction (e.g., cuPDLP)

® Achieving high precision remains challenging (tol=10—%)

Early recollection of the barrier method in the 1960s:

Research question (yes, we start all over agai

Are Newton and the barrier method still relevant with modern GPUs?

Stephen G. Nash. SUMT (Revisited). 1998

First they improved the line search (trying bisection,
then a one-dimensional version of Newton’s method, and
finally golden-section search). Various unconstrained opti-
mization algorithms were used to solve the barrier sub-
problems, at first with little success. The only thing they
did not try was Newton’s method, because the “conven-
tional wisdom” among experts was that Newton’s method
would be impractical because of the computational ex-
pense associated with it. Computers in the early 1960s
were slow and had small memories.

Nevertheless, in desperation they finally programmed
Newton’s method, but without telling their colleagues. The
program was written and then run on the diet problem. It
stopped after a few seconds. Fiacco and McCormick as-
sumed that there must be a programming error. After
much hunting, though, they realized that there was no bug
in the program and that Newton’s method had solved the
optimization problem with astonishing speed.

30f 32

It all started with Newton method

Let F : R” — R" a smooth function. We look for a root for the system of nonlinear
equations
F(x)=0

Newton method

Starting from xp, proceeds as

X1 = xk — OF (i) "1 F (xk)

If F = Vf, we recover the second-order method in optimization

Often require a globalization mechanism outside Newton's basins of attraction:
® Line-search

® Trust-region

4 of 32
Solodov. Newton-type hods for optimization and variational problems. 2014. N

Why are we using sparse direct linear solvers?
The Newton iterations rewrites equivalently as

Xk+1 = Xk + adk with dj solution of BF(Xk)dk = —F(Xk)

Two computational bottlenecks:
® Computation of the (sparse) Jacobian OF using automatic differentiation
® (Sparse) Factorization of the Jacobian OF

If OF (xx) = LU, solving F (xx)dx = —F(xk) translates to two backsolves:

Solve Lv = —F(xk) then Udi=v

VF(x) = L X U

Figure: LU decomposition of a sparse Jacobian (computed using KLU)

5 of 32

Outline

Linear programming

6 of 32

How to solve a linear program (LP) with the interior-point method?

LP in standard form

min ¢’ x subjectto Ax=b, x>0, (LP)

xERN
with c € R", A € R™*" b € R™ problem’s data

LPs are ubiquitous in operational research and mathematical optimization...

7 of 32

Mehrotra. On the impls ion of a primal-dual interior point method. 1992.

Variational problem
We write the KKT equations for the LP in standard form

The primal-dual point w := (x, y, z) is a solution of (LP) if and only if

c+ATy—z:0
Ax—b=0
0<x1lz>0

Central path
For a barrier parameter p > 0, the central path is the set of primal-dual point
w(p) = (x(n), y(u), (1)) satisfying

c+ ATy —z=0

Ax —b=0

XZe = pe, (x,z) >0

As p — 0, the solution w(u) converges to a solution of (LP)

® An interior-point method (IPM) solves (LP) by tracking the central path
® The Mehrotra’s predictor-corrector remains the most efficient IPM for (LP)

Wright. Primal-dual interior-point methods. 1997. §ofs2

A small example is always better than a long discussion

1.00

> 0.50

0.25

0.00

min 2x + by
subject to x+2y > 0.5
0<x<1
0<y<1

+ Feasible set /
@ Attraction point K

L L L L
0.00 0.25 0.50 0.75 1.00
X

Figure: A unique central path

Tracking the central path with Mehrotra's predictor-corrector

Decomposing one IPM iteration

Barrier update: Set the barrier at the average complementarity:

o ZTX
m= n
Affine step: Compute AT by solving
0 AT —1] [Axf c+ATy —z
A0 0f |Ayf| = Ax — b
Z 0 X Az XZe

Corrector step: Compute A by solving

0 AT —J] [Axcor 0
A0 O |Ay®©r| =— 0
Z 0 X| |AzeoT ope — AZ*FAXNe

with o given by Mehrotra’s heuristic
Next iterate: For A, = A2 + AT set

Wii1 = Wk + axlg

with o a step computed using a fraction-to-boundary rule to keep (xk4+1,2k+1) > 0

Mehrotra. On the impl ation of a primal-dual interior point method. 1992.

The reliance on sparse linear solvers

Both the affine step and the corrector step are solution of:

0AT—/ Ax rn
A0 O Ay| =|n
Z0 X Az r

— sparse, not symmetric

Augmented KKT system

The previous system is equivalent to the symmetric indefinite system:
Y AT] [Ax] _ [n+X"1n
A0 Ay| — rn ’

with the diagonal matrix ¥ := X~1Z.

Normal KKT system

We can also eliminate Ay to recover a positive-definite system:

(AT 'AT) Ay = AT M (n+ X7 'n) —r.

Most IPM solvers use the normal KKT system.

11 of 32

Primal-dual regularization
It is the key for GPU performance!
Both the augmented and normal KKT systems have issues if problem has:
® Free variables
® Rank-deficient Jacobian A

® Dense rows in A (leads to a dense matrix AZ~1AT)

Regularized IPM

For parameters (p,d) > 0, solve

Y +pl AT] [Ax _ n+X1n
A -4l | [Ay]| — rn

® The matrix is symmetric quasi-definite (SQD), meaning that it is strongly
factorizable using a signed Cholesky factorization.

® Regularized IPM is the standard IPM applied to the regularized LP:

T P2 l 2
min ¢ Tx + £ [xI2 + =]

)

subject to Ax+r=b, x>0

Altman, Gondzio. Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. 1999.
Friedlander, Orban. A primal-dual regularized interior-point method for convex quadratic programs. 2012.

Gondzio. Matrix-free interior point method. 2012. 12 of 32

The signed Cholesky factorization
Cholesky factorization
If K is symmetric positive definite, there exists a lower triangular matrix L such that

K=LLT

Generalize to symmetric quasidefinite matrix

A BT
k=[z %]

with A and C symmetric positive definite matrices

Signed Cholesky factorization

If K is symmetric quasidefinite, there exists a unit lower triangular matrix L and a
diagonal matrix D such that
K=LDL"

Same properties as the Cholesky factorization, but with more flexibility:

® The LDL factorization is numerically stable and does not require expensive
numerical pivoting

® Easy to implement in parallel

i. Symmetric Quasidefinite matrices. 1995 15ofs2

MadlPM
https://github.com/MadNLP/MadIPM. jl

In a nutshell,
® MadIPM is a GPU-accelerated interior-point solver for LPs
® Implement Mehrotra's predictor-corrector in pure Julia
® Solve the regularized KKT system with NVIDIA cuDSS

We compare MadlPM with Gurobi, running in parallel using 16 threads.

14 of 32

https://github.com/MadNLP/MadIPM.jl

MadIPM: performance profile on MIPLIB

The upper, the better

Benchmark MadIPM

1.00

0

€

Q 075 |

Q

o

—_

o

w—

o

C 0.50

.

£

o

[oX

g

o 025 —— HiGHS
——— Gurobi-1threads
—— Gurobi-16threads
——— MadIPM-cuDSS-A30
——— MadIPM-cuDSS-H100

0'00 1 1 1 1

20 22 24 26 28
Within this factor of the best (log scale)

Figure: Benchmarking MadIPM, Gurobi and HiGHS on 174 large-scale LP instances from MIPLIB

15 of 32

MadIPM: raw performance

The lower, the better

2% [|=—] Gurobi 1-thread
Gurobi 16-threads
I MadiPM-H100

150

ot

Wall time (s)

&0

W e g1 A6 ol 2 a0 @0 b
e) AR o? " o @ NG e
s (\‘7\'% 091\. B\ “\oﬁ‘a W o

Figure: Zoom on the largest instances in MIPLIB

Outline

Nonlinear programming

17 of 32

How to solve a nonlinear program (NLP) with interior-point?

NLP in standard form
m?R? f(x) subjectto ¢(x)=0, x>0, (NLP)
XERN

with f(-) and c(+) to twice continuously differentiable functions

Most use-cases in power engineering, chemical engineering and optimal control

(NLP) is much harder than (LP):
® Non-convex, existence of spurious solutions

® The central path is not a well defined notion for (NLP)

Two reference interior-point solvers:
® |popt: Filter line-search

® Khnitro: Byrd-Omojokun algorithm

18 of 32

Variational problem
We write the KKT equations for (NLP) in standard form

The primal-dual point w := (x, y, z) is a stationary solution of (NLP) if
Vi(x)+Ve(x)Ty—z=0

c(x)=0
0<xlz>0

For a barrier parameter . > 0, IPM aims at solving:
Vi(x)+Ve(x)Ty—z=0
c(x)=0
XZe = pe

Primal-dual interior-point method

Under some regularity assumptions, globalized Newton algorithm
(with proper update for u) converges to a local stationary solution

19 of 32
Wichter, Biegler. Line search filter methods for nonlinear programming: Motivation and global convergence. 2005. N

A second example showing why NLPs are difficult

min 100 (—x1% 4 x2)” + (x1 - 1)?

subject to x1xx2>1
x22 + x1 >0
x1 <05

50

25 F

—C]
> oot |——8
. Feasible set
@ Attraction point
=25 F
-5.0 L !
-3 -2 -1 0 1

Figure: Multiple solutions, multiple central paths 20 of 32

Filter line-search IPM (ala Ipopt)

Barrier update: For a given primal-dual iterate w = (x, y, z), update the barrier
parameter using a monotone rule.

Sensitivities: Compute the Jacobian J := Vc(x)T and the Hessian W := V2, L(x, y)
using sparse automatic differentiation

Newton system: Compute the descent direction Aw by solving

W+pl JT —I] [Ax Vi(x)+JTy—z
J 0 0 Ay| =— c(x)
V4 0 X| |Az XZe

with p a regularization parameter ensuring that
ZT(W 4 pl)Z =0 for Z a basis for Ker(J)

(p usually computed using an inertia-correction procedure)
Next iterate: Set
Wigt1 = Wy =+ akAW

with a a step computed using a filter line-search

Wichter, Biegler. On the impl ion of an interior-point filter li h algorithm for large-scale nonlinear programming. 2006.

Again, we rely on sparse linear solvers

This time, the unsymmetric linear system writes as:

W + pl JT =1 Ax n
J 0 0 Ay| = |n
V4 0 X Az rs

Augmented KKT system

The unsymmetric system reduces to:

W+Z+pIJT Ax| n+X1ln
J 0 Ay -)] ?

with the diagonal matrix ¥ := X~1Z.

By default, most solvers look at the symmetric indefinite augmented KKT system
(no equivalent of the normal KKT system there)

22 of 32

The Duff-Reid LBL factorization

Static and numerical pivoting

Duff-Reid factorization

A=PQLBLT @TPT

with
® P: fill-in minimization matrix (= static pivoting)
® Q: additional pivoting for numerical stability (= numerical pivoting)

® [: unit lower-triangular matrix

® B: block diagonal matrix with blocks of dimension 1 X 1 or 2 X 2

® The LBL factorization has become competitive only in the 1990s, using a
technique known as matching-based preprocessing

® Getting an efficient algorithm for the numerical pivoting @ remains
highly non trivial

® Does not parallelize well

N N N N 23 of 32
Duff, Erisman, Reid. Direct methods for sparse matrices. 2017.

Golub & Greif: Reformulating as a positive definite system

Building a hybrid sparse linear solver

Idea: augmented Lagrangian reformulation

For v > 0, the augmented KKT system is equivalent to

Wy JT7 [AX _ r1+X_1r3+'yJTr2
J 0] |Ay] — r

with W, := W4+ X 4 pl +~JTJ

® Suppose LICQ hold and the reduced Hessian is positive definite:
Then for 7 large-enough the matrix W, is positive definite

® The condensed KKT system reduces to the normal equations:
JW ST Ay =1 — Wty

But W ! is likely dense!

® Keep WJl implicit by solving the normal equations iteratively with a conjugate
gradient (CG) algorithm!

® For large v, CG converges in few iterations

Regev et al., HyKKT: a hybrid direct-iterative method for solving KKT linear systems. 2023. 24 of 32

Faster (sparse) derivative evaluation with ExaModels.jl

Coming back to factorable programming

We also need to compute the sparse derivatives J and W on the GPU using automatic
differentiation

® | arge-scale optimization problems almost always have repetitive patterns

min Z Z F(x; pf/)) (SIMD abstraction)

xb <x<xt
le[L]ie[l]

subject to [g(’")(x; qj)]jE[Jm] + Z Z A (x; S,E")) =0, Vme[M]
n€[Nm] k€[Kn)

® Repeated patterns are made available by specifying the models as iterable objects

® For each repeatitive pattern, the derivative evaluation kernel is constructed &
compiled, and executed in parallel over multiple data

25 of 32
Shin, Pacaud, Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point metJh%ds, :

MadNLP

https://github.com/MadNLP/MadNLP. jl

In a nutshell,
® MadNLP is a GPU-accelerated interior-point solver for NLPs
® Implement filter line-search in pure Julia
® Solve the Golub & Grief KKT system with NVIDIA cuDSS

Compare the time to solution (in seconds) with Ipopt running with the HSL solvers

26 of 32

https://github.com/MadNLP/MadNLP.jl

The method gives excellent results on AC-OPF problems...

Benchmark PGLIB (tol=1e-6)

1.00 ,_“_lr'l:
" T
£
QL o075 F
o)
o
<
a
.
s}
< 050
K]
=
IS}
Q
Q
o 0.25 Ipopt-Ma27
MadNLP-Ma27
Knitro-Ma27
——— LiftedKKT-cuDSS
——— HyKKT-cuDSS
0.00 1 1 L
20 21 22 23

Within this factor of the best (log scale)

Figure: Performance profile, MadNLP against Ipopt on large-scale AC-OPF instances

27 of 32

...but results are more mitigated on CUTEst

Benchmark CUTEst (tol=1e-6)

1.00
%)
£
L o075t
Qo
o
o
w
o
€ 050
o
=
£
o
Q
o
a 0.25 Ipopt-Ma57
Knitro-Ma57
MadNLP-Ma57
——— LiftedKKT-cuDSS
———— HyKKT-cuDSS
0.00 L L L ! L
20.0 22.5 25.0 27.5 210.0 212.5

Within this factor of the best (log scale)

Figure: Performance profile, MadNLP against Ipopt on large-scale CUTEst instances

But...

Instances in CUTEst are too small ...

28 of 32

How expensive should be your GPU?

Image courtesy of Sungho Shin

130
GPU Architecture
. CPU
1204 Pascal
mm Volta
% 1101 B Turing
'g B Ampere
o B Ada Lovelace
© 1004 - Ho
g pper
o B Blackwell
E 90 - - - - - - - - - - - - - - - -
[
o 407
Q
I
&
o 301
©
k<l
201
104

Figure: Time to optimality, here for a large-scale optimal power flow instance.

No need to buy a professional GPU for fast performance!

29 of 32

Outline

Conclusion

30 of 32

Extensions (WIP)

Semi-definite programs (SDP)

min tr(CX) subjectto AX=5b, X >0
Xesn

Mathematical programs with complementarity constraints (MPCC)

m]ilg f(x) subjectto ¢(x)=0,0<x3 Lx>0
xERN

Challenges:
® Both problems exhibit significant ill-conditioning in their respective KKT systems

® They break state-of-the-art sparse direct solver running on the CPU...

31 of 32

Conclusion

® Yes, Newton method is practical on the GPU!
® Sparse direct linear solvers are key

® With GPUs, you can expect up to x10 speed-up on difficult instances,
but not always!

Next step

Solve LPs in batch on the GPU!

® Solve multiple LPs simultaneously, assuming the same KKT sparsity pattern
® Reuse symbolic analysis across all sparse linear systems

® Different central paths — real-time rebalancing when some systems converge
earlier.

® Exploit low-rank structure in solution matrix?

Montoison, Pacaud, Shin, Anitescu. GPU Implementation of Second-Order Linear and Nonlinear Programming Solvers. 2025. 32 of 52

	Linear programming
	Nonlinear programming
	Conclusion

