
GPU-accelerated interior-point solvers
Are second-order methods relevant on GPUs?

François Pacaud

Centre Automatique et Systèmes (CAS), Mines Paris - PSL

SPOT Seminar
February 2nd 2026



Who are we?

https://madsuite.org/

• Alexis Montoison @ Argonne National Laboratory
• François Pacaud @ Mines Paris-PSL
• Sungho Shin @ MIT

2 of 32
.

https://madsuite.org/


GPU-accelerated optimization?
• GPUs are now broadly available in scientific computing
• In optimization, first-order methods are getting the most traction (e.g., cuPDLP)
• Achieving high precision remains challenging (tol=10−8)

Early recollection of the barrier method in the 1960s:

Research question (yes, we start all over again)
Are Newton and the barrier method still relevant with modern GPUs?

Stephen G. Nash. SUMT (Revisited). 1998 3 of 32
.



It all started with Newton method

Let F : Rn → Rn a smooth function. We look for a root for the system of nonlinear
equations

F (x) = 0

Newton method
Starting from x0, proceeds as

xk+1 = xk − ∂F (xk)−1F (xk)

If F = ∇f , we recover the second-order method in optimization

Often require a globalization mechanism outside Newton’s basins of attraction:
• Line-search
• Trust-region

Izmailov, Solodov. Newton-type methods for optimization and variational problems. 2014. 4 of 32
.



Why are we using sparse direct linear solvers?
The Newton iterations rewrites equivalently as

xk+1 = xk + αkdk with dk solution of ∂F (xk)dk = −F (xk)

Two computational bottlenecks:
• Computation of the (sparse) Jacobian ∂F using automatic differentiation
• (Sparse) Factorization of the Jacobian ∂F

Observation
If ∂F (xk) = LU, solving ∂F (xk)dk = −F (xk) translates to two backsolves:

Solve Lv = −F (xk) then Udk = v

∇F (x) = L x U

Figure: LU decomposition of a sparse Jacobian (computed using KLU)

5 of 32
.



Outline

Linear programming

Nonlinear programming

Conclusion

6 of 32
.



How to solve a linear program (LP) with the interior-point method?

LP in standard form

min
x∈Rn

c⊤x subject to Ax = b , x ≥ 0 , (LP)

with c ∈ Rn, A ∈ Rm×n, b ∈ Rm problem’s data

LPs are ubiquitous in operational research and mathematical optimization...

Mehrotra. On the implementation of a primal-dual interior point method. 1992. 7 of 32
.



Variational problem
We write the KKT equations for the LP in standard form

The primal-dual point w := (x , y , z) is a solution of (LP) if and only if

c + A⊤y − z = 0
Ax − b = 0
0 ≤ x ⊥ z ≥ 0

Central path
For a barrier parameter µ > 0, the central path is the set of primal-dual point
w(µ) = (x(µ), y(µ), z(µ)) satisfying

c + A⊤y − z = 0
Ax − b = 0
XZe = µe , (x , z) > 0

As µ → 0, the solution w(µ) converges to a solution of (LP)

• An interior-point method (IPM) solves (LP) by tracking the central path
• The Mehrotra’s predictor-corrector remains the most efficient IPM for (LP)

Wright. Primal-dual interior-point methods. 1997. 8 of 32
.



A small example is always better than a long discussion
min 2x + 5y

subject to x + 2y ≥ 0.5
0 ≤ x ≤ 1
0 ≤ y ≤ 1

Figure: A unique central path
9 of 32

.



Tracking the central path with Mehrotra’s predictor-corrector
Decomposing one IPM iteration

Barrier update: Set the barrier at the average complementarity:

µ =
z⊤x

n
.

Affine step: Compute ∆aff by solving[
0 A⊤ −I
A 0 0
Z 0 X

] [
∆xaff

∆yaff

∆zaff

]
= −

[
c + A⊤y − z

Ax − b
XZe

]
.

Corrector step: Compute ∆corr by solving[
0 A⊤ −I
A 0 0
Z 0 X

] [
∆xcorr

∆y corr

∆zcorr

]
= −

[
0
0

σµe − ∆Z aff∆X affe

]
,

with σ given by Mehrotra’s heuristic
Next iterate: For ∆k = ∆aff + ∆corr, set

wk+1 = wk + αk∆k

with αk a step computed using a fraction-to-boundary rule to keep (xk+1, zk+1) > 0

Mehrotra. On the implementation of a primal-dual interior point method. 1992. 10 of 32
.



The reliance on sparse linear solvers
Both the affine step and the corrector step are solution of:[

0 A⊤−I
A 0 0
Z 0 X

] [
∆x
∆y
∆z

]
=

[
r1
r2
r3

]
.

→ sparse, not symmetric

Augmented KKT system
The previous system is equivalent to the symmetric indefinite system:[

Σ A⊤

A 0

] [
∆x
∆y

]
=

[
r1 + X−1r3

r2

]
,

with the diagonal matrix Σ := X−1Z .

Normal KKT system
We can also eliminate ∆y to recover a positive-definite system:(

AΣ−1A⊤
)

∆y = AΣ−1
(

r1 + X−1r3
)

− r2 .

Most IPM solvers use the normal KKT system.
11 of 32

.



Primal-dual regularization
It is the key for GPU performance!

Both the augmented and normal KKT systems have issues if problem has:
• Free variables
• Rank-deficient Jacobian A
• Dense rows in A (leads to a dense matrix AΣ−1A⊤)

Regularized IPM
For parameters (ρ, δ) > 0, solve[

Σ + ρI A⊤

A −δI

] [
∆x
∆y

]
=

[
r1 + X−1r3

r2

]
.

• The matrix is symmetric quasi-definite (SQD), meaning that it is strongly
factorizable using a signed Cholesky factorization.

• Regularized IPM is the standard IPM applied to the regularized LP:

min
x,r

c⊤x +
ρ

2
∥x∥2 +

1
2δ

∥r∥2

subject to Ax + r = b , x ≥ 0

Altman, Gondzio. Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. 1999.
Friedlander, Orban. A primal–dual regularized interior-point method for convex quadratic programs. 2012.
Gondzio. Matrix-free interior point method. 2012. 12 of 32
.



The signed Cholesky factorization

Cholesky factorization
If K is symmetric positive definite, there exists a lower triangular matrix L such that

K = LL⊤

Generalize to symmetric quasidefinite matrix

K =
[

A B⊤

B −C

]
with A and C symmetric positive definite matrices

Signed Cholesky factorization
If K is symmetric quasidefinite, there exists a unit lower triangular matrix L and a
diagonal matrix D such that

K = LDL⊤

Same properties as the Cholesky factorization, but with more flexibility:
• The LDL factorization is numerically stable and does not require expensive

numerical pivoting
• Easy to implement in parallel

Vanderbei. Symmetric Quasidefinite matrices. 1995 13 of 32
.



MadIPM

https://github.com/MadNLP/MadIPM.jl

In a nutshell,
• MadIPM is a GPU-accelerated interior-point solver for LPs
• Implement Mehrotra’s predictor-corrector in pure Julia
• Solve the regularized KKT system with NVIDIA cuDSS

Experiments
We compare MadIPM with Gurobi, running in parallel using 16 threads.

14 of 32
.

https://github.com/MadNLP/MadIPM.jl


MadIPM: performance profile on MIPLIB
The upper, the better

Figure: Benchmarking MadIPM, Gurobi and HiGHS on 174 large-scale LP instances from MIPLIB

15 of 32
.



MadIPM: raw performance
The lower, the better

Figure: Zoom on the largest instances in MIPLIB

16 of 32
.



Outline

Linear programming

Nonlinear programming

Conclusion

17 of 32
.



How to solve a nonlinear program (NLP) with interior-point?

NLP in standard form

min
x∈Rn

f (x) subject to c(x) = 0 , x ≥ 0 , (NLP)

with f (·) and c(·) to twice continuously differentiable functions

Most use-cases in power engineering, chemical engineering and optimal control

(NLP) is much harder than (LP):
• Non-convex, existence of spurious solutions
• The central path is not a well defined notion for (NLP)

Two reference interior-point solvers:
• Ipopt: Filter line-search
• Knitro: Byrd-Omojokun algorithm

18 of 32
.



Variational problem
We write the KKT equations for (NLP) in standard form

The primal-dual point w := (x , y , z) is a stationary solution of (NLP) if

∇f (x) + ∇c(x)⊤y − z = 0
c(x) = 0
0 ≤ x ⊥ z ≥ 0

For a barrier parameter µ > 0, IPM aims at solving:

∇f (x) + ∇c(x)⊤y − z = 0
c(x) = 0
XZe = µe

Primal-dual interior-point method
Under some regularity assumptions, globalized Newton algorithm
(with proper update for µ) converges to a local stationary solution

Wächter, Biegler. Line search filter methods for nonlinear programming: Motivation and global convergence. 2005. 19 of 32
.



A second example showing why NLPs are difficult

min 100
(

−x12 + x2
)2 + (x1 − 1)2

subject to x1 × x2 ≥ 1

x22 + x1 ≥ 0
x1 ≤ 0.5

Figure: Multiple solutions, multiple central paths
20 of 32

.



Filter line-search IPM (ala Ipopt)

Barrier update: For a given primal-dual iterate w = (x , y , z), update the barrier
parameter using a monotone rule.

Sensitivities: Compute the Jacobian J := ∇c(x)⊤ and the Hessian W := ∇2
xx L(x , y)

using sparse automatic differentiation

Newton system: Compute the descent direction ∆w by solving[
W + ρI J⊤ −I

J 0 0
Z 0 X

] [
∆x
∆y
∆z

]
= −

[
∇f (x) + J⊤y − z

c(x)
XZe

]
.

with ρ a regularization parameter ensuring that

Z⊤(W + ρI)Z ≻ 0 for Z a basis for Ker(J)

(ρ usually computed using an inertia-correction procedure)

Next iterate: Set
wk+1 = wk + αk∆w

with αk a step computed using a filter line-search

Wächter, Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. 2006. 21 of 32
.



Again, we rely on sparse linear solvers

This time, the unsymmetric linear system writes as:[
W + ρI J⊤ −I

J 0 0
Z 0 X

] [
∆x
∆y
∆z

]
=

[
r1
r2
r3

]

Augmented KKT system
The unsymmetric system reduces to:[

W + Σ + ρI J⊤

J 0

] [
∆x
∆y

]
=

[
r1 + X−1r3

r2

]
,

with the diagonal matrix Σ := X−1Z .

By default, most solvers look at the symmetric indefinite augmented KKT system
(no equivalent of the normal KKT system there)

22 of 32
.



The Duff-Reid LBL factorization
Static and numerical pivoting

Duff-Reid factorization

A = PQ LBL⊤ Q⊤P⊤

with
• P: fill-in minimization matrix (= static pivoting)
• Q: additional pivoting for numerical stability (= numerical pivoting)
• L: unit lower-triangular matrix
• B: block diagonal matrix with blocks of dimension 1 × 1 or 2 × 2

• The LBL factorization has become competitive only in the 1990s, using a
technique known as matching-based preprocessing

• Getting an efficient algorithm for the numerical pivoting Q remains
highly non trivial

• Does not parallelize well

Duff, Erisman, Reid. Direct methods for sparse matrices. 2017. 23 of 32
.



Golub & Greif: Reformulating as a positive definite system
Building a hybrid sparse linear solver

Idea: augmented Lagrangian reformulation
For γ > 0, the augmented KKT system is equivalent to[

Wγ J⊤

J 0

] [
∆x
∆y

]
= −

[
r1 + X−1r3 + γJ⊤r2

r2

]
with Wγ := W + Σ + ρI + γJ⊤J

• Suppose LICQ hold and the reduced Hessian is positive definite:
Then for γ large-enough the matrix Wγ is positive definite

• The condensed KKT system reduces to the normal equations:

JW −1
γ J⊤∆y = r2 − W −1

γ γ

But W −1
γ is likely dense!

• Keep W −1
γ implicit by solving the normal equations iteratively with a conjugate

gradient (CG) algorithm!
• For large γ, CG converges in few iterations

Regev et al., HyKKT: a hybrid direct-iterative method for solving KKT linear systems. 2023. 24 of 32
.



Faster (sparse) derivative evaluation with ExaModels.jl
Coming back to factorable programming

Remark
We also need to compute the sparse derivatives J and W on the GPU using automatic
differentiation

• Large-scale optimization problems almost always have repetitive patterns

min
x♭≤x≤x♯

∑
l∈[L]

∑
i∈[Il ]

f (l)(x ; p(l)
i ) (SIMD abstraction)

subject to
[
g (m)(x ; qj )

]
j∈[Jm ]

+
∑

n∈[Nm ]

∑
k∈[Kn ]

h(n)(x ; s(n)
k ) = 0, ∀m ∈ [M]

• Repeated patterns are made available by specifying the models as iterable objects
constraint(c, 3 * x[i+1]ˆ3 + 2 * sin(x[i+2]) for i = 1:N-2)

• For each repeatitive pattern, the derivative evaluation kernel is constructed &
compiled, and executed in parallel over multiple data

Shin, Pacaud, Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods, 2024.25 of 32
.



MadNLP

https://github.com/MadNLP/MadNLP.jl

In a nutshell,
• MadNLP is a GPU-accelerated interior-point solver for NLPs
• Implement filter line-search in pure Julia
• Solve the Golub & Grief KKT system with NVIDIA cuDSS

Experiment
Compare the time to solution (in seconds) with Ipopt running with the HSL solvers

26 of 32
.

https://github.com/MadNLP/MadNLP.jl


The method gives excellent results on AC-OPF problems...

Figure: Performance profile, MadNLP against Ipopt on large-scale AC-OPF instances

27 of 32
.



...but results are more mitigated on CUTEst

Figure: Performance profile, MadNLP against Ipopt on large-scale CUTEst instances

But...
Instances in CUTEst are too small ...

28 of 32
.



How expensive should be your GPU?
Image courtesy of Sungho Shin

90

100

110

120

130
GPU Architecture

CPU
Pascal
Volta
Turing
Ampere
Ada Lovelace
Hopper
Blackwell

M2 P
ro 

(20
22

)

P1
00

 (2
01

6)

P4
00

0 (
20

16
)

GV10
0 (

20
18

)

RT
X 80

00
 (2

01
8)

RT
X 20

80
 Ti 

(20
18

)

T4
 (2

01
8)

RT
X A60

00
 (2

02
0)

A10
0 (

20
20

)

RT
X 30

90
 (2

02
0)

RT
X 40

90
 (2

02
2)

RT
X 60

00
 Ad

a (
20

22
)

L40
 (2

02
2)

H10
0 (

20
22

)

H20
0 (

20
23

)

RT
X 50

90
 (2

02
4)

RT
X PR

O 60
00

 (2
02

5)
0

10

20

30

40

To
ta

l E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

Figure: Time to optimality, here for a large-scale optimal power flow instance.

No need to buy a professional GPU for fast performance!

29 of 32
.



Outline

Linear programming

Nonlinear programming

Conclusion

30 of 32
.



Extensions (WIP)

Semi-definite programs (SDP)

min
X∈Sn

tr(CX) subject to AX = b , X ⪰ 0

Mathematical programs with complementarity constraints (MPCC)

min
x∈Rn

f (x) subject to c(x) = 0 , 0 ≤ x1 ⊥ x2 ≥ 0

Challenges:
• Both problems exhibit significant ill-conditioning in their respective KKT systems
• They break state-of-the-art sparse direct solver running on the CPU...

31 of 32
.



Conclusion

Take-away
• Yes, Newton method is practical on the GPU!
• Sparse direct linear solvers are key
• With GPUs, you can expect up to x10 speed-up on difficult instances,

but not always!

Next step
Solve LPs in batch on the GPU!

• Solve multiple LPs simultaneously, assuming the same KKT sparsity pattern
• Reuse symbolic analysis across all sparse linear systems
• Different central paths → real-time rebalancing when some systems converge

earlier.
• Exploit low-rank structure in solution matrix?

Montoison, Pacaud, Shin, Anitescu. GPU Implementation of Second-Order Linear and Nonlinear Programming Solvers. 2025. 32 of 32
.


	Linear programming
	Nonlinear programming
	Conclusion

