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A paradigm shift in energy transition

The ambition of Efficacity is to improve

urban energy efficiency.

Our team focus on the control of energy management system.
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What do we do

HOUSE 

How to control storage inside urban microgrid ?

We follow a common procedure in operation research:

1. We consider a real world problem

How to control a bunch of stocks ?

2. We model it as an optimization problem

As demands are not predictable, we formulate

a stochastic optimization problem

3. We develop algorithms to solve this particular

optimization problem

Dynamic Programming based methods,

Model Predictive Control, ...
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Analyzing the real world problem

HOUSE HOUSE 

HOUSE 

BATTERYSOLAR 
PANEL

SOLAR 
PANEL

We consider a system where different units (houses)

are connected together via a local network

(microgrid).

The houses have different stocks available:

• batteries,

• electrical hot water tank

and are equipped with solar panels.

We control the stocks every 15mn and we want to

• minimize electric bill

• maintain a comfortable temperature

inside the house

4/40



Outline

Physical modeling

Modeling a house

Modeling the network

Building the optimization problem

Resolution methods

Describing MPC and SDDP

Assessing strategies

Numerical resolution

Settings

Results

Conclusion

5/40



Physical modeling



Outline

Physical modeling

Modeling a house

Modeling the network

Building the optimization problem

Resolution methods

Describing MPC and SDDP

Assessing strategies

Numerical resolution

Settings

Results

Conclusion

6/40



For each house, we consider the following devices
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We introduce states, controls and noises
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• Stock variables Xt =
(
Bt ,Ht ,θ

i
t ,θ

w
t

)
• Bt , battery level (kWh)

• Ht , hot water storage (kWh)

• θi
t , inner temperature (◦C)

• θw
t , wall’s temperature (◦C)

• Control variables Ut =
(
FB,t ,FT ,t ,FH,t

)
• FB,t , energy exchange with the battery (kW)

• FT ,t , energy used to heat the hot water tank (kW)

• FH,t , thermal heating (kW)

• Uncertainties Wt =
(
DE

t ,D
DHW
t

)
• DE

t , electrical demand (kW)

• DDHW
t , domestic hot water demand (kW)
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We work with real data

We consider one day during summer 2015 (data from Meteo France):
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We generate scenarios of demands during this day
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These scenarios are generated with StRoBE, open-sourced by KU-Leuven 10/40



Discrete time state equations for each house

We have the four state equations (all linear), describing the stocks’

evolution over time:

Bt+1 =αB Bt + ∆T
(
ρcF+

B,t −
1

ρd
F−

B,t

)
Ht+1 =αH Ht + ∆T

[
FT ,t − DDHW

t

]
θw
t+1 =θw

t +
∆T

cm

[
θi
t − θw

t

Ri + Rs
+

θe
t − θw

t

Rm + Re
+ γFH,t +

Ri

Ri + Rs
P int
t +

Re

Re + Rm
Pext
t

]

θi
t+1 =θi

t +
∆T

ci

[
θw
t − θi

t

Ri + Rs
+

θe
t − θi

t

Rv
+

θe
t − θi

t

Rf
+ (1 − γ)FH,t +

Rs

Ri + Rs
P int
t

]

which will be denoted:

Xt+1 = ft(Xt ,Ut ,Wt+1)
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Viewing the network as a graph

We consider three different configurations
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H1 House 1 PV + Battery

H2 House 2 PV

H3 House 3 .

H1 House 1 PV + Battery

H2 House 2 PV
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H5 House 5 PV

H6 House 6 .

H1 House 1 PV + Battery

H2 House 2 PV

H3 House 3 .

H4 House 4 PV + Battery

H5 House 5 PV

H6 House 6 .

H7 House 7 PV + Battery

H8 House 8 PV

H9 House 9 .

H10 House 10 PV + Battery

H11 House 11 PV

H12 House 12 .
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Modeling exchange through the graph
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We denote by Q the flows through the arcs, and ∆ the balance at the

nodes.

The flows must satisfy the Kirchhoff’s law:

AQ = ∆

where A is the node-incidence matrix.

We suppose furthermore that losses occur through the arcs (η = 0.96).
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Two commandments to rule them all

HOUSE 
Thou shall:

• Satisfy thermal comfort

• Optimize operational costs
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Prices and temperature setpoints vary along time
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• Tf = 24h, ∆T = 15mn

• Peak and off-peak hours

πE
t = 0.09 or 0.15 euros/kWh

• Temperature set-point

θ̄i
t = 16◦C or 20◦C
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The costs we have to pay

• Cost to import electricity from the network

− bE
t max{0,−FNE ,t+1}︸ ︷︷ ︸

selling

+πE
t max{0,FNE ,t+1}︸ ︷︷ ︸

buying

where we define the recourse variable (electricity balance):

FNE ,t+1︸ ︷︷ ︸
Network

= DE
t+1︸︷︷︸

Demand

+ FB,t︸︷︷︸
Battery

+ FH,t︸︷︷︸
Heating

+ FT ,t︸︷︷︸
Tank

− Fpv,t︸︷︷︸
Solar panel

+ ∆t︸︷︷︸
Exchange

• Virtual Cost of thermal discomfort: κth( θi
t − θ̄i

t︸ ︷︷ ︸
deviation from setpoint

)

10 5 0 5 10
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κth

Piecewise linear cost

which penalizes

temperature if below

given setpoint
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Instantaneous and final costs for a single house

• The instantaneous convex costs are for the house h

Lht (Xt ,Ut ,∆t ,Wt+1) = −bEt max{0,−FNE ,t+1}︸ ︷︷ ︸
buying

+πE
t max{0,FNE ,t+1}︸ ︷︷ ︸

selling

+ κth(θi
t − θ̄i

t)︸ ︷︷ ︸
discomfort

• We add a final linear cost

K (XTf
) = −πHHTf

− πBBTf

to avoid empty stocks at the final horizon Tf
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Writing the stochastic optimization problem

We aim to minimize the costs for all houses

min
X ,U,Q,∆

∑
h J

h(X h,Uh)

s.t AQ = ∆

where for each house h:

Jh(X h,Uh,∆h) = E

[
Tf −1∑
t=0

Lh
t (Xh

t ,U
h
t ,∆

h
t ,Wt+1) + K(Xh

Tf
)

]

s.t Xh
t+1 = ft(Xh

t ,U
h
t ,Wt+1) Dynamic

X [ ≤ Xh
t ≤ X ]

U[ ≤ Uh
t ≤ U]

X h
0 = X h

ini

σ(Uh
t ) ⊂ σ(W1, . . . ,Wt) Non-anticipativity
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How to solve this stochastic optimal control problem?

We have 96 timesteps (4 x 24) and for each problem

3 houses 6 houses 12 houses

Stocks 10 20 40

Controls 14 30 68

Uncertainties 8 8 8

The state dimension is high (≥ 10), the problem is not tractable

by a straightforward use of dynamic programming because of

the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

1. Model Predictive Control (MPC)

2. Stochastic Dual Dynamic Programming (SDDP)
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MPC vs SDDP: uncertainties modelling

The two algorithms use optimization scenarios to model the uncertainties:

MPC

Figure 1: MPC considers the average

...

SDDP
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Figure 2: ...and SDDP discrete laws
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MPC vs SDDP: online resolution

At the beginning of time period [τ, τ + 1], do

MPC

• Consider a rolling horizon [τ, τ + H[

• Consider a deterministic scenario of

demands (forecast)
(
W τ+1, . . . ,W τ+H

)
• Solve the deterministic optimization

problem

min
X,U

[
τ+H∑
t=τ

Lt(Xt ,Ut ,W t+1) + K(Xτ+H )

]

s.t. Xt+1 = f (Xt ,Ut ,W t+1)

X [ ≤ Xt ≤ X ]

U[ ≤ Ut ≤ U]

• Get optimal solution (U#
τ , . . . ,U

#
τ+H )

over horizon H = 24h

• Send first control U#
τ to assessor

SDDP

• We consider the approximated value

functions
(
Ṽt

)Tf
0

Ṽt︸︷︷︸
Piecewise affine functions

≤ Vt

• Solve the stochastic optimization problem

min
uτ

EWτ+1

[
Lτ (Xτ , uτ ,Wτ+1)

+ Ṽτ+1

(
fτ (Xτ , uτ ,Wτ+1)

)]
⇐⇒ min

uτ

∑
i

πi

[
Lτ (Xτ , uτ ,W

i
τ+1)

+ Ṽτ+1

(
fτ (Xτ , uτ ,W

i
τ+1)

)]
• Get optimal solution U#

τ

• Send U#
τ to assessor
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A brief recall on Dynamic Programming

Dynamic Programming

Compute offline value functions with the backward equation:

VT (x) = K(x)

Vt(xt) = min
Ut

E
[
Lt(xt ,Ut ,Wt+1)︸ ︷︷ ︸

current cost

+Vt+1

(
f (xt ,Ut ,Wt+1)

)
︸ ︷︷ ︸

future costs

]

Stochastic Dual Dynamic Programming

10 5 0 5 10
x
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80

100

y

• Convex value functions Vt are approximated as

a supremum of a finite set of affine functions

• Affine functions (=cuts) are computed during

forward/backward passes, till convergence

Ṽt(x) = max
1≤k≤K

{
λkt x + βk

t

}
≤ Vt(x)

• SDDP makes an extensive use of LP solver
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Out-of-sample comparison

Optimization
 scenarios

Assessment
 scenarios
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Numerical resolution
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Our stack is deeply rooted in Julia language

• Modeling Language: JuMP

• Open-source SDDP Solver:

StochDynamicProgramming.jl

• LP Solver: Gurobi 7.0

https://github.com/JuliaOpt/StochDynamicProgramming.jl
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Comparison of MPC and SDDP

We compare MPC and SDDP over 1000 assessment scenarios

MPC SDDP
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MPC SDDP Diff

3 houses

Costs 1.52 1.42 -6.6 %

tc 0.8 2.8 x3.5

6 houses

Costs 3.04 2.85 -6.3 %

tc 1.7 4.6 x2.7

12 houses

Costs 6.08 5.74 -5.6 %

tc 3.5 8.6 x2.5

tc : average time to compute the control online (in ms)
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MPC and SDDP use differently the battery
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Trajectories of battery for the ‘3 houses’ problem.
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Discussing the convergence of SDDP w.r.t. the dimension

We compute the upper-bound afterward, with a great number of

scenarios (10000) We define the gap as : gap = (ub − lb)/ub.

0 50 100 150 200 250
Iteration

0.00

0.01

0.02

0.03

0.04

0.05

Ga
p

3 houses
6 houses
12 houses

Gap against number of iterations

0 50 100 150 200 250 300 350 400 450
0

0.00

0.01

0.02

0.03

0.04

0.05

Ga
p

Gap against time

We compare the time (in seconds)
taken to achieve a particular gap:

gap 3 houses 6 houses 12 houses

2 % 7.0 21.0 137.8

1 % 8.0 28.8 .

0.5 % 8.0 47.2 .

0.1 % 65.1 . .
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Conclusion



Conclusion

• SDDP beats MPC, however the difference narrows along the number

of dimensions (because of the convergence of SDDP)

• Both MPC and SDDP are penalized if dimension becomes too high
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Perspectives

Mix SDDP with spatial decomposition like

Dual Approximate Dynamic Programming (DADP) to control

bigger urban neighbourhood (from 10 to 100 houses)

NETWORK

COORDINATOR

HOUSE 1 HOUSE 2 HOUSE N

...
SOLAR 
PANEL
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Modeling exchanges between houses

The grid is represented by a directed graph G = (N ,A). At each time

t ∈ J0,T − 1K we have:

∆i
t

Qa
t

• a flow Qa
t through each arc a,

inducing a cost cat (Qa
t ),

modeling the exchange between

two houses

• a grid flow ∆i
t at each node i ,

resulting from the balance

equation

∆i
t =

∑
a∈input(i)

Qa
t −

∑
b∈output(i)

Qb
t
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A transport cost decoupled in time

At each time step t ∈ J0,T − 1K , we define the transport cost as the

sum of the cost of the flows Qa
t through the arcs a of the grid:

J,t [Qt ] = E
(∑

a∈A
cat (Qa

t )
)
,

where the cat ’s are easy to compute functions (say quadratic).

Kirchhof’s law

The balance equation stating the conservation between Qt and ∆t

rewrites in the following matrix form:

AQt + ∆t = 0 ,

where A is the node-arc incidence matrix of the grid.
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The overall production transport problem

The production cost JP aggregates the costs at all nodes i :

JP [∆] =
∑
i∈N

J iP [∆i ] ,

and the transport cost JT aggregates the costs at all time t:

JT [Q] =
T−1∑
t=0

JT ,t [Qt ] .

The compact production-transport problem formulation writes:

min
Q,∆

JP [∆] + JT [Q]

s.t. AQ + ∆ = 0 .
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Introducing decomposition methods

The decomposition/coordination methods we want to deal with are

iterative algorithms involving the following ingredients.

• Decompose the global problem in several subproblems

of smaller size by processing the constraint AQ + ∆ = 0,

• Coordinate at each iteration the subproblems using either

a price or an allocation.

AQ + ∆︸︷︷︸
allocation

= 0  λ︸︷︷︸
price

• Solve the subproblems using Dynamic Programming (when

a state is available in the subproblem), taking into account

the price or the allocation transmitted by the coordination.
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Wandering inside the zoology of decomposition algorithm

Once the problem formulated, it remains to solve it!

• Primal and dual decomposition (via L-BFGS update),

• Operator splitting schemes (ADMM, proximal decomposition, ...),

• Stochastic (accelerated?) gradient descent.

Still a work in progress! ;-)
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