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Managing the network at European scale



Motivation

An energy production and transport optimization problem on a grid

modeling energy exchange across European countries.1

FRA

SPAPT

UK
BEL

GER

SWI

ITA

• Stochastic dynamical problem

• Discrete time formulation (weekly time steps)

• Large-scale problem (8 countries)

1But the framework remains valid for smaller energy management problems.
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Modeling



Production at each node of the grid

At each node i of the grid, we formulate a production problem on a

discrete time horizon J0,T K, involving the following variables at each

time t:

Wi
t

Xi
t

Ui
t

Qa
t

Qb
t

Fi
t

• Xi
t : state variable

(dam volume)

• Ui
t : control variable

(energy production)

• Fi
t : grid flow

(import/export from the grid)

• Wi
t : noise

(consumption, renewable)
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Writing the problem for each node

For each node i ∈ J1,NK:

• The dynamics x it+1 = f it (x it , u
i
t ,w

i
t ) writes

x it+1 = x it + ait︸︷︷︸
inflow

− pit︸︷︷︸
turbinate

− s it︸︷︷︸
spillage

.

• The load balance (supply = demand) gives

pit︸︷︷︸
turbinate

+ g i
t︸︷︷︸

thermal

+ r it︸︷︷︸
recourse

+ f it︸︷︷︸
grid flow

= d i
t︸︷︷︸

demand

.

Thus, we explicit w i
t and uit

w i
t = (ait , d

i
t ) , uit = (pit , s

i
t , g

i
t , r

i
t ) .

We pay to use the thermal power plant and we penalize the recourse:

Lit(x
i
t , u

i
t , f

i
t ,w

i
t ) = αi

t(g
i
t )2 + βi

tg
i
t︸ ︷︷ ︸

quadratic cost

+ κitr
i
t︸︷︷︸

recourse penalty

.
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A stochastic optimization problem decoupled in space

At each node i of the grid, we have to solve a stochastic optimal control

subproblem depending on the grid flow process Fi :2

J iP[Fi ] = min
Xi ,Ui

E
( T−1∑

t=0

Lit(Xi
t ,U

i
t ,F

i
t ,W

i
t+1) + K i (Xi

T )
)
,

s.t. Xi
t+1 = f it (Xi

t ,U
i
t ,F

i
t ,W

i
t+1) ,

Xi
t ∈ X

i,ad

t , Ui
t ∈ U

i,ad

t ,

Ui
t � Ft ,

The last equation is the measurability constraint, where Ft is

the σ-field generated by the noises {Wi
τ}τ=1...t,i=1...N up to time t.

2The notation J iP[·] means that the argument of J iP is a random variable.
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Modeling exchanges between countries

The grid is represented by a directed graph G = (N ,A). At each time

t ∈ J0,T − 1K we have:

Fi
t

Qa
t

• a flow Qa
t through each arc a,

inducing a cost cat (Qa
t ),

modeling the exchange between

two countries

• a grid flow Fi
t at each node i ,

resulting from the balance

equation

Fi
t =

∑
a∈input(i)

Qa
t −

∑
b∈output(i)

Qb
t
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A transport cost decoupled in time

At each time step t ∈ J0,T − 1K , we define the transport cost as the

sum of the cost of the flows Qa
t through the arcs a of the grid:

JT,t [Qt ] = E
(∑

a∈A
cat (Qa

t )
)
,

where the cat ’s are easy to compute functions (say quadratic).

Kirchhoff’s law

The balance equation stating the conservation between Qt and Ft

rewrites in the following matrix form:

AQt + Ft = 0 ,

where A is the node-arc incidence matrix of the grid.
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The overall production transport problem

The production cost JP aggregates the costs at all nodes i :

JP[F] =
∑
i∈N

J iP[Fi ] ,

and the transport cost JT aggregates the costs at all time t:

JT[Q] =
T−1∑
t=0

JT,t [Qt ] .

The compact production-transport problem formulation writes:

min
Q,F

JP[F] + JT[Q] (P)

s.t. AQ + F = 0 .

10/32



Resolution methods



Where are we heading to?

The problem P has:

• N nodes (with N = 8);

• T time steps (with T = 52);

• N independent random variables per time step t: W1
t , · · · ,WN

t .

We aim to solve the problem numerically. We suppose that for all t,

Wi
t is a discrete random variable, with support size nbin. We denote by

Wt = (W1
t , · · · ,W

N
t ) ,

the global random variable at time t.
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First idea: solving the whole problem inplace!

Write the problem and solve it!

P :

But ...

• N = 8 nodes and T = 52 time steps.

• Non-anticipativity constraint: we ought to formulate

the problem on a tree (Stochastic Programming approach)

• We suppose that W1
t , · · · ,WN

t are space independent. The support size of Wt is

equal to nNbin ...

number of nodes ∝ (nNbin)T

nbin 1 2 5

n leafs 1 ≈ 10125 ≈ 10290
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Second idea: Dynamic Programming

We assume that the noise W0, · · · ,WT are independent.

We decompose the problem time step by time step → T subproblems

P : V1 V2 V3 VT

We use Dynamic Programming to compute the

value functions V1, · · · ,VT .

But ...

• N nodes: curse of dimensionality (8 decoupled stocks dynamics).

• Still a support size nNbin for Wt

We use Stochastic Dual Dynamic Programming to solve the problem

with N = 8 dimensions.
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A brief recall on Stochastic Dynamic Programming

Dynamic Programming

We compute value functions with the backward equation:

VT (x) = K(x)

Vt(xt) = min
ut

E
[
Lt(xt , ut ,Wt+1)︸ ︷︷ ︸

current cost

+Vt+1

(
f (xt , ut ,Wt+1)

)
︸ ︷︷ ︸

future costs

]

Stochastic Dual Dynamic Programming

10 5 0 5 10
x

0

20

40

60

80

100

y

• Convex value functions Vt are approximated as a

supremum of a finite set of affine functions

• Affine functions (=cuts) are computed during

forward/backward passes, till convergence

Ṽt(x) = max
1≤k≤K

{
λkt x + βk

t

}
≤ Vt(x)

• SDDP makes an extensive use of LP/QP solver

However, SDDP still has to deal with a noise Wt with a support size nNbin...
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Introducing decentralized decomposition methods

P1

P1

P1
qa

qb

qc

min
Q,F

JP[F] + JT[Q] (P)

s.t. AQ + F = 0

; λ︸︷︷︸
price

.

Once the price λ is fixed, we can decompose
the problem P in 3 independent subproblems

P1, · · · ,P3.

P1

λ
(k)
1

P2

λ
(k)
2

P3

λ
(k)
3

//
//

//

Dual decomposition:

• Fix a voltage λ(k)

• Decouple the problem node by node

• Solve P1, · · · ,P3 by Dynamic Programming

and get an outflow F

• Solve transport problem and get flow Q

• Update λ with:

λ(k+1) = λ(k) + ρ× (AQ + F)︸ ︷︷ ︸
=0 if equilibrium
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Recalling the original problem

min
Q,F

JP[F] + JT[Q] (P)

s.t. AQ + F = 0 .

where

• JP(F) =
∑N

i=1 J
i
P(Fi ) with

J iP[Fi ] = min
Xi ,Ui

E
( T−1∑

t=0

Lit(Xi
t ,U

i
t ,F

i
t ,W

i
t+1) + K i (Xi

T )
)
,

s.t. lot of constraints

• F = F0, · · · ,FT−1 is a process,

• so is Q = Q0, · · · ,QT−1.

; λ appears to be also a time process ...
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Decomposition appears more complicated than expected

{
f |f � σ(W0, · · · ,Wt)

}
λt

σ(Yt)

λ̃t

λ(k) = (λ
(k)
1 , λ

(k)
2 , · · · , λ(k)

T ) is a processus,

correlated in time:

• λ(k)
t depends on past history

λ
(k)
t = φt(W0, · · · ,Wt) . . .

• ... and λ(k) is a ”noise” in the

subproblems P1, · · · ,PN

We use a relaxation to overcome this issue:

• We introduce an information process Yt ,

whose dynamics is known

• We approximate λ
(k)
t by its conditional

expectation w.r.t. Yt

λ̃
(k)
t = E

(
λ

(k)
t |Yt

)
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Price decomposition

The production and transport optimization problem writes

min
Q,F

JP[F] + JT[Q] s.t. AQ + F = 0 .
(
P
)

The decomposition scheme consists in:

1. dualizing the constraint,

2. approximating the multiplier λ by its conditional expectation w.r.t. Y.

This trick leads to the following problem

max
λ

min
Q,F

JP[F] + JT[Q] +
〈
E(λ | Y) ,AQ + F

〉
.
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A dual gradient-like algorithm

Applying the Uzawa algorithm to the dual problem

max
λ

min
Q,F

JP[F] + JT[Q] +
〈
E(λ | Y) ,AQ + F

〉
,

leads to a decomposition between production and transport:

F(k+1) ∈ arg min
F

JP[F] +
〈
E
(
λ(k)

∣∣ Y
)
,F
〉
, Production

Q(k+1) ∈ arg min
Q

JT[Q] +
〈
E
(
λ(k)

∣∣ Y
)
,AQ

〉
, Transport

E
(
λ(k+1)

∣∣ Y
)

= E
(
λ(k)

∣∣ Y
)

+ ρ E
(
AQ(k+1) + F(k+1)

∣∣ Y
)
. Update
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Decomposing the production problem

The production subproblem

min
F

JP[F] +
〈
E
(
λ(k)

∣∣ Y
)
,F
〉
,

evidently decomposes node by node

min
Fi

J iP[Fi ] +
〈
E
(
λi,(k)

∣∣ Y
)
,Fi
〉
,

hence a stochastic optimal control subproblem for each node i :

min
Xi ,Ui ,Fi

E
( T−1∑

t=0

(
Li
t(Xi

t ,U
i
t ,F

i
t ,Wt+1) +

〈
E
(
λ

i,(k)
t

∣∣ Yt

)
,Fi

t

〉)
+ K i (Xi

T )

)
s.t. Xi

t+1 = f it (Xi
t ,U

i
t ,F

i
t ,Wt+1)

Ui
t � Ft .
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Solving the production subproblems by DP

Assuming that

• the process W is a white noise,

• the process Y follows a dynamics Yt+1 = ht(Yt ,Wt+1),

Then (Xt ,Yt) is a valid state to apply Dynamic Programming:

V i
T (x , y) = K i (x)

V i
t (x , y) = min

u,f
E
(
Li
t(x , u, f ,Wt+1)

+
〈
E
(
λ

i,(k)
t

∣∣ Yt = y
)
, f
〉

+ V i
t+1(Xi

t+1,Yt+1)
)

s.t. Xi
t+1 = f it (x , u, f ,Wt+1) ,

Yt+1 = ht(y ,Wt+1) .
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Where are we heading to?

• Solving directly the problem is not numerically tractable

• SDDP allows to solve the problem, but still has to deal with a noise

Wt with size nNbin ...

• Price decomposition allows to decompose the problem in N

independent subproblems

Now, we aim to compare numerically SDDP and DADP.
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Numerical implementation



Our stack is deeply rooted in Julia language

• Modeling Language: JuMP

• Open-source SDDP Solver:

StochDynamicProgramming.jl

• LP/QP Solver: Gurobi 7.02

https://github.com/JuliaOpt/StochDynamicProgramming.jl
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Implementation of SDDP and DADP

• Implementing SDDP is straightforward

(but still a noise Wt with size nNbin...)

• DADP is more elaborated. The difficulty lies in the update scheme:

E
(
λ(k+1)

∣∣ Y
)

= E
(
λ(k)

∣∣ Y
)

+ ρ E
(
AQ(k+1) + F(k+1)

∣∣ Y
)
.

We use a crude relaxation: Y = 0. Denoting λ(k) = E
(
λ(k)

)
,

the update becomes

λ(k+1) = λ(k) + ρ︸︷︷︸
Update step

E
(
AQ(k+1) + F(k+1)

)︸ ︷︷ ︸
Monte Carlo

.
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Implementing gradient ascent

• Gradient ascent is too slow ...

• We try to implement accelerated gradient ascent3 but ...

• Unfortunately, we do not know the Lipschitz constant of the

derivative!

• The line-search kills the performance of gradient ascent...

To overcome this issue, we use Quasi-Newton (BFGS): the update

becomes

λ(k+1) = λ(k) + ρ(k)W (k) Ê
{
AQ(k+1) + F(k+1)

}
.

• We exploit the strong-convexity,

• The line-search is penalized by inexact gradient

(especially near convergence where the algorithm requires precision)

3described in the seminal paper of Nesterov
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Adding an augmented Lagrangian

Let first introduce the augmented Lagrangian corresponding to the

relaxed problem:

L(F,Q,λ) = JP(F)+JT(Q)+
〈
λ ,E(AQ+F|Y)

〉
+
ρ

2

∥∥E(AQ + F|Y)
∥∥2

.

If a saddle point exists, the problem is equivalent to:

max
λ

min
F,Q

L(F,Q,λ) .

ADMM solves iteratively the subproblems JP and JT, and updates the

multiplier λ with a constant step-size ρ:

F(k+1) = arg min
F

JP(F) +
〈
λ(k) ,F

〉
+
ρ

2

∥∥∥E(AQ(k)
)

+ F
∥∥∥2

Q(k+1) = arg min
Q

JT(Q) +
〈
λ(k) ,AQ

〉
+
ρ

2

∥∥∥AQ + E
(
F(k+1)

)∥∥∥2

λ(k+1) = λ(k) + ρE(AQ(k+1) + F(k+1)) .
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Double, double toil and trouble

Digesting the stochastic caldron, between time and space ...

BFGS ADMM

DP

QP

• Global problem P

min
Q,F

JP[F] + JT[Q]

s.t. AQ + F = 0 .

• Decomposed production
subproblem Pi

min
Fi

JP(Fi ) +
〈
λ
i,(k)

, Fi
〉

• DP subproblem V i
t

V i
t (x, y) = min

u,f
E
(
Lit (x, u, f ,Wt+1)

+
〈
E
(
λ
i,(k)
t

∣∣ Yt = y
)
, f

〉
+ V i

t+1(Xi
t+1, Yt+1)

)
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SDDP convergence
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Figure 1: Convergence of SDDP’s upper and lower bounds (T = 52, nbin = 2).
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Multipliers convergence
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Figure 2: Convergence of multipliers with BFGS (T = 52, nbin = 2).
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ADMM convergence
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Figure 3: Convergence of ADMM, plotting the logarithm of the norm of the

primal residual (T = 52, nbin = 2). 30/32



Results — Weekly time steps

Compute Bellman value functions at weekly time steps (T = 52).

nbin 1 2 5

SDDP value 9.396 9.687 +∞
SDDP time 8” 928” +∞

BFGS value 9.411 9.687 9.974

BFGS time 69” 157” 575”

ADMM value 9.404 9.682 9.984

ADMM time 65” 326” 643”

• SDDP does not converge if nbin = 5.

• If nbin = 1, results of SDDP, BFGS and ADMM are almost equivalent.

• BFGS and ADMM compute a gradient with Monte-Carlo ...

• Here, BFGS is penalized by line-search, and stops

earlier if no search direction is found.
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Conclusion



Conclusion

Conclusion

• A survey of different algorithms, mixing spatial

and time decomposition.

• DADP works well with the crude relaxation Y = 0.

• SDDP does not converge in a finite time if nbin = 5.

• We had a lot of troubles to deal with approximate gradients!

Perspectives

• Find a proper information process Y.

• Improve the integration between SDDP and DADP.

• Test other decomposition schemes (by quantity, by prediction).
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Dams trajectory
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SGD convergence

Plotting the convergence with T = 52 and nbin = 2.
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