Optimization of Energy Production and Transport

A stochastic decomposition approach

P. Carpentier, J.-P. Chancelier, A. Lenoir, F. Pacaud

PGMO Days — November 14, 2017

ENSTA ParisTech — ENPC ParisTech — EDF Lab — Efficacity

Managing the network at European scale

Motivation

An energy production and transport optimization problem on a grid modeling energy exchange across European countries.¹

- Stochastic dynamical problem
- Discrete time formulation (weekly time steps)
- Large-scale problem (8 countries)

¹But the framework remains valid for smaller energy management problems.

Modeling

Resolution methods

Stochastic Programming

Time decomposition

Spatial decomposition

Numerical implementation

Conclusion

Modeling

Production at each node of the grid

At each node *i* of the grid, we formulate a production problem on a discrete time horizon [0, T], involving the following variables at each time *t*:

- **X**^{*i*}_{*t*}: state variable (dam volume)
- **U**^{*i*}_{*t*}: control variable (energy production)
- Fⁱ_t: grid flow (import/export from the grid)
- **W**^{*i*}_{*t*}: noise (consumption, renewable)

Writing the problem for each node

For each node $i \in \llbracket 1, N \rrbracket$:

• The dynamics $x_{t+1}^i = f_t^i(x_t^i, u_t^i, w_t^i)$ writes

• The load balance (supply = demand) gives

Writing the problem for each node

For each node $i \in [1, N]$:

• The dynamics $x_{t+1}^i = f_t^i(x_t^i, u_t^i, w_t^i)$ writes

• The load balance (supply = demand) gives

 $x_{t+1}^i = x_t^i + \underbrace{a_t^i}_{t-1} - \underbrace{p_t^i}_{t-1} - \underbrace{s_t^i}_{t-1}.$ inflow

turbinate

spillage

Thus, we explicit w_t^i and u_t^i

$$w_t^i = (a_t^i, d_t^i), \ u_t^i = (p_t^i, s_t^i, g_t^i, r_t^i).$$

We pay to use the thermal power plant and we penalize the recourse:

$$L_t^i(x_t^i, u_t^i, f_t^i, w_t^i) = \underbrace{\alpha_t^i(g_t^i)^2 + \beta_t^i g_t^i}_{t} + \underbrace{\kappa_t^i r_t^i}_{t}$$

quadratic cost recourse penalty

.

At each node *i* of the grid, we have to solve a stochastic optimal control subproblem depending on the grid flow process F^{i} :²

$$J_{\mathfrak{P}}^{i}[\mathbf{F}^{i}] = \min_{\mathbf{X}^{i},\mathbf{U}^{i}} \mathbb{E}\left(\sum_{t=0}^{T-1} L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{F}_{t}^{i},\mathbf{W}_{t+1}^{i}) + K^{i}(\mathbf{X}_{T}^{i})\right),$$

s.t. $\mathbf{X}_{t+1}^{i} = f_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{F}_{t}^{i},\mathbf{W}_{t+1}^{i}),$

$$\begin{aligned} \mathbf{X}_{t+1}^{i} &= I_{t} \left(\mathbf{X}_{t}, \mathbf{U}_{t}, \mathbf{F}_{t}, \mathbf{W}_{t+1} \right), \\ \mathbf{X}_{t}^{i} &\in \mathcal{X}_{t}^{i, \mathrm{ad}}, \quad \mathbf{U}_{t}^{i} \in \mathcal{U}_{t}^{i, \mathrm{ad}}, \\ \mathbf{U}_{t}^{i} &\preceq \mathcal{F}_{t}, \end{aligned}$$

The last equation is the measurability constraint, where \mathcal{F}_t is the σ -field generated by the noises $\{\mathbf{W}_{\tau}^i\}_{\tau=1...t,i=1...N}$ up to time t.

²The notation $J^{i}_{\mathfrak{M}}[\cdot]$ means that the argument of $J^{i}_{\mathfrak{M}}$ is a random variable.

The grid is represented by a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{A})$. At each time $t \in [\![0, T-1]\!]$ we have:

- a flow Q^a_t through each arc a, inducing a cost c^a_t(Q^a_t), modeling the exchange between two countries
- a grid flow **F**^{*i*}_{*t*} at each node *i*, resulting from the balance equation

$$\mathbf{F}_t^i = \sum_{a \in input(i)} \mathbf{Q}_t^a - \sum_{b \in output(i)} \mathbf{Q}_t^b$$

At each time step $t \in [[0, T - 1]]$, we define the transport cost as the sum of the cost of the flows \mathbf{Q}_t^a through the arcs *a* of the grid:

$$J_{\mathfrak{T},t}[\mathbf{Q}_t] = \mathbb{E}\Big(\sum_{a \in \mathcal{A}} c_t^a(\mathbf{Q}_t^a)\Big) \;,$$

where the $c_t^{a'}$'s are easy to compute functions (say quadratic).

Kirchhoff's law

The balance equation stating the conservation between \mathbf{Q}_t and \mathbf{F}_t rewrites in the following matrix form:

 $A \mathbf{Q}_t + \mathbf{F}_t = 0 \ ,$

where A is the node-arc incidence matrix of the grid.

The production cost $J_{\mathfrak{P}}$ aggregates the costs at all nodes *i*:

$$J_{\mathfrak{P}}[\mathsf{F}] = \sum_{i \in \mathcal{N}} J^{i}_{\mathfrak{P}}[\mathsf{F}^{i}] ,$$

and the *transport cost* $J_{\mathfrak{T}}$ aggregates the costs at all time *t*:

$$J_{\mathfrak{T}}[\mathbf{Q}] = \sum_{t=0}^{T-1} J_{\mathfrak{T},t}[\mathbf{Q}_t] \; .$$

The compact production-transport problem formulation writes:

$$\min_{\mathbf{Q},\mathbf{F}} \quad J_{\mathfrak{P}}[\mathbf{F}] + J_{\mathfrak{T}}[\mathbf{Q}]$$
s.t. $A\mathbf{Q} + \mathbf{F} = 0$. (\mathcal{P})

Resolution methods

The problem ${\mathcal P}$ has:

- N nodes (with N = 8);
- T time steps (with T = 52);
- N independent random variables per time step t: $\mathbf{W}_{t}^{1}, \cdots, \mathbf{W}_{t}^{N}$.

We aim to solve the problem numerically. We suppose that for all t, \mathbf{W}_{t}^{i} is a discrete random variable, with support size \mathfrak{n}_{bin} . We denote by

$$\mathbf{W}_t = (\mathbf{W}_t^1, \cdots, \mathbf{W}_t^N) ,$$

the global random variable at time t.

First idea: solving the whole problem inplace!

Write the problem and solve it!

First idea: solving the whole problem inplace!

Write the problem and solve it!

But ...

- N = 8 nodes and T = 52 time steps.
- Non-anticipativity constraint: we ought to formulate the problem on a tree (Stochastic Programming approach)
- We suppose that $\mathbf{W}_t^1, \cdots, \mathbf{W}_t^N$ are space independent. The support size of \mathbf{W}_t is equal to \mathfrak{n}_{bin}^N ...

number of nodes $\propto (\mathfrak{n}_{bin}^N)^T$

First idea: solving the whole problem inplace!

Write the problem and solve it!

But ...

- N = 8 nodes and T = 52 time steps.
- Non-anticipativity constraint: we ought to formulate the problem on a tree (Stochastic Programming approach)
- We suppose that $\mathbf{W}_t^1, \cdots, \mathbf{W}_t^N$ are space independent. The support size of \mathbf{W}_t is equal to \mathfrak{n}_{bin}^N ...

number of nodes $\propto (\mathfrak{n}_{bin}^N)^T$

n _{bin}	1	2	5
n leafs	1	$pprox 10^{125}$	$pprox 10^{290}$

Second idea: Dynamic Programming

We assume that the noise $\mathbf{W}_0, \cdots, \mathbf{W}_T$ are independent. We decompose the problem time step by time step $\rightarrow T$ subproblems

Second idea: Dynamic Programming

We assume that the noise $\mathbf{W}_0, \cdots, \mathbf{W}_T$ are independent. We decompose the problem time step by time step $\rightarrow T$ subproblems

We use Dynamic Programming to compute the value functions V_1, \dots, V_T .

But ...

- N nodes: curse of dimensionality (8 decoupled stocks dynamics).
- Still a support size \mathfrak{n}_{bin}^N for \mathbf{W}_t

We use Stochastic Dual Dynamic Programming to solve the problem with N = 8 dimensions.

Dynamic Programming

We compute value functions with the backward equation:

Stochastic Dual Dynamic Programming

- Convex value functions V_t are approximated as a supremum of a finite set of affine functions
- Affine functions (=cuts) are computed during forward/backward passes, till convergence

$$\widetilde{V}_t(x) = \max_{1 \le k \le K} \{\lambda_t^k x + \beta_t^k\} \le V_t(x)$$

• SDDP makes an extensive use of LP/QP solver

Dynamic Programming

We compute value functions with the backward equation:

Stochastic Dual Dynamic Programming

- Convex value functions V_t are approximated as a supremum of a finite set of affine functions
- Affine functions (=cuts) are computed during forward/backward passes, till convergence

 $\widetilde{V}_t(x) = \max_{1 \le k \le K} \{\lambda_t^k x + \beta_t^k\} \le V_t(x)$

• SDDP makes an extensive use of LP/QP solver

However, SDDP still has to deal with a noise \mathbf{W}_t with a support size \mathfrak{n}_{bin}^N ...

Introducing decentralized decomposition methods

$$\begin{split} \min_{\mathbf{Q},\mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}] + J_{\mathfrak{T}}[\mathbf{Q}] & (\mathcal{P}) \\ & \text{s.t. } & A\mathbf{Q} + \mathbf{F} = 0 & . \end{split}$$

Introducing decentralized decomposition methods

$$\begin{split} \min_{\mathbf{Q},\mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}] + J_{\mathfrak{T}}[\mathbf{Q}] & (\mathcal{P}) \\ \text{s.t.} & A\mathbf{Q} + \mathbf{F} = 0 & \rightsquigarrow \underbrace{\lambda}_{price} & . \end{split}$$

Once the price λ is fixed, we can decompose the problem \mathcal{P} in 3 independent subproblems $\mathcal{P}_1, \cdots, \mathcal{P}_3$.

Introducing decentralized decomposition methods

$$\begin{split} \min_{\mathbf{Q},\mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}] + J_{\mathfrak{T}}[\mathbf{Q}] & (\mathcal{P}) \\ \text{s.t.} & A\mathbf{Q} + \mathbf{F} = 0 & \rightsquigarrow \underbrace{\lambda}_{price} & . \end{split}$$

Once the price λ is fixed, we can decompose the problem \mathcal{P} in 3 independent subproblems $\mathcal{P}_1, \cdots, \mathcal{P}_3$.

Dual decomposition:

- Fix a voltage λ^(k)
- Decouple the problem node by node
- Solve P_1, \cdots, P_3 by Dynamic Programming and get an outflow **F**
- Solve transport problem and get flow ${\bf Q}$
- Update λ with:

$$\lambda^{(k+1)} = \lambda^{(k)} + \rho \times \underbrace{(A\mathbf{Q} + \mathbf{F})}_{(A\mathbf{Q} + \mathbf{F})}$$

=0 if equilibrium

15/32

$$\begin{split} \min_{\mathbf{Q},\mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}] + J_{\mathfrak{T}}[\mathbf{Q}] \\ \text{s.t.} & A\mathbf{Q} + \mathbf{F} = 0 \;. \end{split}$$

where

•
$$J_{\mathfrak{P}}(\mathbf{F}) = \sum_{i=1}^{N} J_{\mathfrak{P}}^{i}(\mathbf{F}^{i})$$
 with
 $J_{\mathfrak{P}}^{i}[\mathbf{F}^{i}] = \min_{\mathbf{X}^{i}, \mathbf{U}^{i}} \mathbb{E}\left(\sum_{t=0}^{T-1} L_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{W}_{t+1}^{i}) + \mathcal{K}^{i}(\mathbf{X}_{T}^{i})\right),$
s.t. lot of constraints

- $\mathbf{F} = \mathbf{F}_0, \cdots, \mathbf{F}_{T-1}$ is a process,
- so is $\mathbf{Q} = \mathbf{Q}_0, \cdots, \mathbf{Q}_{T-1}$.

 $\sim \lambda$ appears to be also a time process ...

Decomposition appears more complicated than expected

 $\lambda^{(k)} = (\lambda_1^{(k)}, \lambda_2^{(k)}, \cdots, \lambda_T^{(k)})$ is a processus, correlated in time:

•
$$\lambda_t^{(k)}$$
 depends on past history

$$\boldsymbol{\lambda}_t^{(k)} = \phi_t(\mathbf{W}_0, \cdots, \mathbf{W}_t) \dots$$

... and λ^(k) is a "noise" in the subproblems P₁, · · · , P_N

Decomposition appears more complicated than expected

• $\lambda_t^{(k)}$ depends on past history

$$\boldsymbol{\lambda}_t^{(k)} = \phi_t(\mathbf{W}_0, \cdots, \mathbf{W}_t) \dots$$

... and λ^(k) is a "noise" in the subproblems P₁, · · · , P_N

We use a relaxation to overcome this issue:

• We introduce an information process **Y**_t, whose dynamics is known

Decomposition appears more complicated than expected

• $\lambda_t^{(k)}$ depends on past history

$$\boldsymbol{\lambda}_t^{(k)} = \phi_t(\mathbf{W}_0, \cdots, \mathbf{W}_t) \dots$$

... and λ^(k) is a "noise" in the subproblems P₁, · · · , P_N

We use a relaxation to overcome this issue:

- We introduce an information process **Y**_t, whose dynamics is known
- We approximate λ^(k)_t by its conditional expectation w.r.t. Υ_t

$$ilde{\lambda}_t^{(k)} = \mathbb{E}ig(\lambda_t^{(k)}|\mathbf{Y}_tig)$$

$$\{f | f \leq \sigma(\mathbf{W}_0, \cdots, \mathbf{W}_t)\}$$

17/32

The production and transport optimization problem writes

 $\min_{\mathbf{Q},\mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}] + J_{\mathfrak{T}}[\mathbf{Q}] \qquad \text{s.t.} \quad A\mathbf{Q} + \mathbf{F} = 0 \ . \tag{\mathcal{P}}$

The decomposition scheme consists in:

- 1. dualizing the constraint,
- 2. approximating the multiplier λ by its conditional expectation w.r.t. \mathbf{Y} .

This trick leads to the following problem

 $\max_{\boldsymbol{\lambda}} \min_{\boldsymbol{Q},\boldsymbol{F}} J_{\mathfrak{P}}[\boldsymbol{F}] + J_{\mathfrak{T}}[\boldsymbol{Q}] + \left\langle \mathbb{E}(\boldsymbol{\lambda} \mid \boldsymbol{Y}), A\boldsymbol{Q} + \boldsymbol{F} \right\rangle.$

Applying the Uzawa algorithm to the dual problem

$$\max_{\boldsymbol{\lambda}} \min_{\boldsymbol{Q},\boldsymbol{F}} J_{\mathfrak{P}}[\boldsymbol{F}] + J_{\mathfrak{T}}[\boldsymbol{Q}] + \left\langle \mathbb{E}(\boldsymbol{\lambda} \mid \boldsymbol{Y}), A\boldsymbol{Q} + \boldsymbol{F} \right\rangle,$$

leads to a decomposition between production and transport:

$$\mathbf{F}^{(k+1)} \in \underset{\mathbf{F}}{\arg\min} \mathcal{J}_{\mathfrak{P}}[\mathbf{F}] + \left\langle \mathbb{E} \left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y} \right), \mathbf{F} \right\rangle, \qquad \qquad \mathsf{Production}$$

$$\mathbf{Q}^{(k+1)} \in \underset{\mathbf{Q}}{\arg\min} J_{\mathfrak{T}}[\mathbf{Q}] + \left\langle \mathbb{E} \left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y} \right), A \mathbf{Q} \right\rangle, \qquad \qquad \mathsf{Transport}$$

$$\mathbb{E} \left(\boldsymbol{\lambda}^{(k+1)} \mid \mathbf{Y} \right) = \mathbb{E} \left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y} \right) + \rho \mathbb{E} \left(A \mathbf{Q}^{(k+1)} + \mathbf{F}^{(k+1)} \mid \mathbf{Y} \right). \quad \mathsf{Update}$$

The production subproblem

$$\min_{\mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}] + \left\langle \mathbb{E} \left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y} \right), \mathbf{F} \right\rangle,$$

evidently decomposes node by node

$$\min_{\mathbf{F}^{i}} J_{\mathfrak{P}}^{i}[\mathbf{F}^{i}] + \left\langle \mathbb{E} \left(\boldsymbol{\lambda}^{i,(k)} \mid \mathbf{Y} \right), \mathbf{F}^{i} \right\rangle,$$

hence a stochastic optimal control subproblem for each node *i*:

$$\min_{\mathbf{X}^{i},\mathbf{U}^{i},\mathbf{F}^{i}} \mathbb{E} \left(\sum_{t=0}^{T-1} \left(L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{F}_{t}^{i},\mathbf{W}_{t+1}) + \left\langle \mathbb{E} \left(\boldsymbol{\lambda}_{t}^{i,(k)} \mid \mathbf{Y}_{t} \right), \mathbf{F}_{t}^{i} \right\rangle \right) + \mathcal{K}^{i}(\mathbf{X}_{T}^{i}) \right)$$
s.t. $\mathbf{X}_{t+1}^{i} = f_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{F}_{t}^{i},\mathbf{W}_{t+1})$
 $\mathbf{U}_{t}^{i} \leq \mathcal{F}_{t}$.

Assuming that

- the process W is a white noise,
- the process **Y** follows a dynamics $\mathbf{Y}_{t+1} = h_t(\mathbf{Y}_t, \mathbf{W}_{t+1})$,

Then $(\mathbf{X}_t, \mathbf{Y}_t)$ is a valid state to apply Dynamic Programming:

$$\begin{aligned} V_T^i(x,y) &= \mathcal{K}^i(x) \\ V_t^i(x,y) &= \min_{u,f} \ \mathbb{E}\left(L_t^i(x,u,f,\mathbf{W}_{t+1}) \\ &+ \left\langle \mathbb{E}\left(\boldsymbol{\lambda}_t^{i,(k)} \mid \mathbf{Y}_t = y\right), f\right\rangle + V_{t+1}^i(\mathbf{X}_{t+1}^i,\mathbf{Y}_{t+1}) \right) \\ \text{s.t.} \quad \mathbf{X}_{t+1}^i &= f_t^i(x,u,f,\mathbf{W}_{t+1}), \\ &\qquad \mathbf{Y}_{t+1} &= h_t(y,\mathbf{W}_{t+1}). \end{aligned}$$

- Solving directly the problem is not numerically tractable
- SDDP allows to solve the problem, but still has to deal with a noise \mathbf{W}_t with size \mathfrak{n}_{bin}^N ...
- Price decomposition allows to decompose the problem in *N* independent subproblems

Now, we aim to compare numerically SDDP and DADP.

Numerical implementation

Our stack is deeply rooted in Julia language

- Modeling Language: JuMP
- Open-source SDDP Solver: StochDynamicProgramming.jl
- LP/QP Solver: Gurobi 7.02

https://github.com/JuliaOpt/StochDynamicProgramming.jl

Implementation of SDDP and DADP

 Implementing SDDP is straightforward (but still a noise W_t with size n^N_{bin}...)

Implementation of SDDP and DADP

- Implementing SDDP is straightforward (but still a noise W_t with size n^N_{bin}...)
- DADP is more elaborated. The difficulty lies in the update scheme:

$$\mathbb{E}(\boldsymbol{\lambda}^{(k+1)} \mid \mathbf{Y}) = \mathbb{E}(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}) + \rho \mathbb{E}(A\mathbf{Q}^{(k+1)} + \mathbf{F}^{(k+1)} \mid \mathbf{Y}) .$$

We use a crude relaxation: $\mathbf{Y} = 0$. Denoting $\underline{\lambda}^{(k)} = \mathbb{E}(\boldsymbol{\lambda}^{(k)})$, the update becomes

$$\underline{\lambda}^{(k+1)} = \underline{\lambda}^{(k)} + \underbrace{\rho}_{\text{Update step}} \underbrace{\mathbb{E}\left(A\mathbf{Q}^{(k+1)} + \mathbf{F}^{(k+1)}\right)}_{\text{Monte Carlo}} \,.$$

Implementing gradient ascent

- Gradient ascent is too slow ...
- We try to implement accelerated gradient ascent³ but ...
 - Unfortunately, we do not know the Lipschitz constant of the derivative!
 - The line-search kills the performance of gradient ascent...

³described in the seminal paper of Nesterov

Implementing gradient ascent

- Gradient ascent is too slow ...
- We try to implement accelerated gradient ascent³ but ...
 - Unfortunately, we do not know the Lipschitz constant of the derivative!
 - The line-search kills the performance of gradient ascent...

To overcome this issue, we use Quasi-Newton (BFGS): the update becomes

$$\underline{\lambda}^{(k+1)} = \underline{\lambda}^{(k)} + \rho^{(k)} W^{(k)} \widehat{\mathbb{E}} \{ A \mathbf{Q}^{(k+1)} + \mathbf{F}^{(k+1)} \} .$$

- We exploit the strong-convexity,
- The line-search is penalized by inexact gradient (especially near convergence where the algorithm requires precision)

³described in the seminal paper of Nesterov

Adding an augmented Lagrangian

Let first introduce the augmented Lagrangian corresponding to the relaxed problem:

 $\mathcal{L}(\mathsf{F},\mathsf{Q},\lambda) = J_{\mathfrak{P}}(\mathsf{F}) + J_{\mathfrak{T}}(\mathsf{Q}) + \langle \lambda, \mathbb{E}(A\mathsf{Q}+\mathsf{F}|\mathsf{Y})
angle + rac{
ho}{2} \left\| \mathbb{E}(A\mathsf{Q}+\mathsf{F}|\mathsf{Y})
ight\|^2 \;.$

If a saddle point exists, the problem is equivalent to:

 $\max_{\boldsymbol{\lambda}} \min_{\boldsymbol{F},\boldsymbol{Q}} \mathcal{L}(\boldsymbol{F},\boldsymbol{Q},\boldsymbol{\lambda}) .$

Adding an augmented Lagrangian

Let first introduce the augmented Lagrangian corresponding to the relaxed problem:

 $\mathcal{L}(\mathsf{F},\mathsf{Q},\lambda) = J_{\mathfrak{P}}(\mathsf{F}) + J_{\mathfrak{T}}(\mathsf{Q}) + \langle \lambda, \mathbb{E}(A\mathsf{Q}+\mathsf{F}|\mathsf{Y})
angle + rac{
ho}{2} \left\| \mathbb{E}(A\mathsf{Q}+\mathsf{F}|\mathsf{Y})
ight\|^2 \;.$

If a saddle point exists, the problem is equivalent to:

 $\max_{\boldsymbol{\lambda}} \min_{\boldsymbol{\mathsf{F}},\boldsymbol{\mathsf{Q}}} \ \mathcal{L}(\boldsymbol{\mathsf{F}},\boldsymbol{\mathsf{Q}},\boldsymbol{\lambda}) \ .$

ADMM solves iteratively the subproblems $J_{\mathfrak{P}}$ and $J_{\mathfrak{T}}$, and updates the multiplier λ with a constant step-size ρ :

$$\begin{aligned} \mathbf{F}^{(k+1)} &= \operatorname*{arg\,min}_{\mathbf{F}} \mathcal{J}_{\mathfrak{P}}(\mathbf{F}) + \left\langle \boldsymbol{\lambda}^{(k)}, \mathbf{F} \right\rangle + \frac{\rho}{2} \left\| \mathbb{E} \left(A \mathbf{Q}^{(k)} \right) + \mathbf{F} \right\|^{2} \\ \mathbf{Q}^{(k+1)} &= \operatorname*{arg\,min}_{\mathbf{Q}} \mathcal{J}_{\mathfrak{T}}(\mathbf{Q}) + \left\langle \boldsymbol{\lambda}^{(k)}, A \mathbf{Q} \right\rangle + \frac{\rho}{2} \left\| A \mathbf{Q} + \mathbb{E} \left(\mathbf{F}^{(k+1)} \right) \right\|^{2} \\ \boldsymbol{\lambda}^{(k+1)} &= \boldsymbol{\lambda}^{(k)} + \rho \mathbb{E} \left(A \mathbf{Q}^{(k+1)} + \mathbf{F}^{(k+1)} \right) . \end{aligned}$$

Double, double toil and trouble

Digesting the stochastic caldron, between time and space ...

 \bullet Global problem ${\cal P}$

 $\min_{\mathbf{Q},\mathbf{F}} \quad J_{\mathfrak{P}}[\mathbf{F}] + J_{\mathfrak{T}}[\mathbf{Q}]$ s.t. $A\mathbf{Q} + \mathbf{F} = 0$.

• Decomposed production subproblem \mathcal{P}_i

 $\min_{\mathbf{F}^{i}}J_{\mathfrak{P}}(\mathbf{F}^{i})+\left\langle \boldsymbol{\lambda}^{i,\left(k\right)}\right.,\mathbf{F}^{i}\right\rangle$

• DP subproblem V_t^i $v_t^i(x, y) = \min_{u, f} \mathbb{E} \left(t_t^i(x, u, f, \mathbf{W}_{t+1}) + \langle \mathbb{E}(\mathbf{\lambda}_t^{i,(k)} | \mathbf{Y}_t = y), f \rangle + v_{t+1}^i(\mathbf{X}_{t+1}^i, \mathbf{Y}_{t+1}) \right)$

SDDP convergence

Figure 1: Convergence of SDDP's upper and lower bounds (T = 52, $n_{bin} = 2$).

Multipliers convergence

Figure 2: Convergence of multipliers with BFGS (T = 52, $n_{bin} = 2$).

ADMM convergence

Figure 3: Convergence of ADMM, plotting the logarithm of the norm of the primal residual (T = 52, $n_{bin} = 2$).

Results — Weekly time steps

Compute Bellman value functions at weekly time steps (T = 52).

\mathfrak{n}_{bin}	1	2	5
SDDP value	9.396	9.687	$+\infty$
SDDP time	8"	928''	$+\infty$
BFGS value	9.411	9.687	9.974
BFGS time	69"	157"	575''
ADMM value	9.404	9.682	9.984
ADMM time	65"	326''	643''

• SDDP does not converge if $n_{bin} = 5$.

Results — Weekly time steps

Compute Bellman value functions at weekly time steps (T = 52).

n _{bin}	1	2	5
SDDP value	9.396	9.687	$+\infty$
SDDP time	8''	928''	$+\infty$
BFGS value	<mark>9.411</mark>	9.687	9.974
BFGS time	69''	157"	575''
ADMM value	<mark>9.404</mark>	9.682	9.984
ADMM time	65"	326''	643''

- SDDP does not converge if $n_{bin} = 5$.
- If $n_{\text{bin}} = 1$, results of SDDP, BFGS and ADMM are almost equivalent.

Results — Weekly time steps

Compute Bellman value functions at weekly time steps (T = 52).

n _{bin}	1	2	5
SDDP value	9.396	9.687	$+\infty$
SDDP time	8"	928''	$+\infty$
BFGS value	9.411	9.687	9.974
BFGS time	69"	157"	575 "
ADMM value	9.404	9.682	9.984
ADMM time	65"	326''	643''

- SDDP does not converge if $n_{bin} = 5$.
- If $n_{bin} = 1$, results of SDDP, BFGS and ADMM are almost equivalent.
- BFGS and ADMM compute a gradient with Monte-Carlo ...

Compute Bellman value functions at weekly time steps (T = 52).

n _{bin}	1	2	5
SDDP value	9.396	9.687	$+\infty$
SDDP time	8"	928''	$+\infty$
BFGS value	9.411	9.687	9.974
BFGS time	69"	157 ''	575"
ADMM value	9.404	9.682	9.984
ADMM time	65"	326''	643''

- SDDP does not converge if $n_{bin} = 5$.
- If $n_{bin} = 1$, results of SDDP, BFGS and ADMM are almost equivalent.
- BFGS and ADMM compute a gradient with Monte-Carlo ...
- Here, BFGS is penalized by line-search, and stops earlier if no search direction is found.

Conclusion

Conclusion

Conclusion

- A survey of different algorithms, mixing spatial and time decomposition.
- DADP works well with the crude relaxation $\mathbf{Y} = 0$.
- SDDP does not converge in a finite time if $n_{bin} = 5$.
- We had a lot of troubles to deal with approximate gradients!

Perspectives

- Find a proper information process **Y**.
- Improve the integration between SDDP and DADP.
- Test other decomposition schemes (by quantity, by prediction).

Résolution de grands problèmes en optimisation stochastique dynamique. Thèse de doctorat, Université Paris-Est, 2010.

V. Leclère.

Contributions aux méthodes de décomposition en optimisation stochastique. Thèse de doctorat, Université Paris-Est, 2014.

A. Lenoir and P. Mahey.

A survey of monotone operator splitting methods and decomposition of convex programs.

RAIRO Operations Research 51, 17-41, 2017.

Philippe Mahey, Jonas Koko, Arnaud Lenoir and Luc Marchand. Coupling decomposition with dynamic programming for a stochastic spatial model for long-term energy pricing problem.

Dams trajectory

SGD convergence

Plotting the convergence with T = 52 and $n_{bin} = 2$.

