Optimization of Energy Production and Transport

A stochastic decomposition approach
P. Carpentier, J.-P. Chancelier, A. Lenoir, F. Pacaud

PGMO Days — November 14, 2017
ENSTA ParisTech - ENPC ParisTech - EDF Lab - Efficacity

Managing the network at European scale

Motivation

An energy production and transport optimization problem on a grid modeling energy exchange across European countries. ${ }^{1}$

- Stochastic dynamical problem
- Discrete time formulation (weekly time steps)
- Large-scale problem (8 countries)

[^0]
Lecture outline

Modeling

Resolution methods
Stochastic Programming
Time decomposition
Spatial decomposition

Numerical implementation

Conclusion

Modeling

Production at each node of the grid

At each node i of the grid, we formulate a production problem on a discrete time horizon $\llbracket 0, T \rrbracket$, involving the following variables at each time t :

- \mathbf{X}_{t}^{i} : state variable (dam volume)
- \mathbf{U}_{t}^{i} : control variable (energy production)
- \mathbf{F}_{t}^{i} : grid flow (import/export from the grid)
- \mathbf{W}_{t}^{i} : noise
(consumption, renewable)

Writing the problem for each node

For each node $i \in \llbracket 1, N \rrbracket$:

- The dynamics $x_{t+1}^{i}=f_{t}^{i}\left(x_{t}^{i}, u_{t}^{i}, w_{t}^{i}\right)$ writes

$$
x_{t+1}^{i}=x_{t}^{i}+\underbrace{a_{t}^{i}}_{\text {inflow }}-\underbrace{p_{t}^{i}}_{\text {turbinate }}-\underbrace{s_{t}^{i}}_{\text {spillage }}
$$

- The load balance (supply $=$ demand $)$ gives

$$
\underbrace{p_{t}^{i}}_{\text {turbinate }}+\underbrace{g_{t}^{i}}_{\text {thermal }}+\underbrace{r_{t}^{i}}_{\text {recourse }}+\underbrace{f_{t}^{i}}_{\text {grid flow }}=\underbrace{d_{t}^{i}}_{\text {demand }}
$$

Writing the problem for each node

For each node $i \in \llbracket 1, N \rrbracket$:

- The dynamics $x_{t+1}^{i}=f_{t}^{i}\left(x_{t}^{i}, u_{t}^{i}, w_{t}^{i}\right)$ writes

$$
x_{t+1}^{i}=x_{t}^{i}+\underbrace{a_{t}^{i}}_{\text {inflow }}-\underbrace{p_{t}^{i}}_{\text {turbinate }}-\underbrace{s_{t}^{i}}_{\text {spillage }}
$$

- The load balance (supply $=$ demand $)$ gives

$$
\underbrace{p_{t}^{i}}_{\text {turbinate }}+\underbrace{g_{t}^{i}}_{\text {thermal }}+\underbrace{r_{t}^{i}}_{\text {recourse }}+\underbrace{f_{t}^{i}}_{\text {grid flow }}=\underbrace{d_{t}^{i}}_{\text {demand }}
$$

Thus, we explicit w_{t}^{i} and u_{t}^{i}

$$
w_{t}^{i}=\left(a_{t}^{i}, d_{t}^{i}\right), u_{t}^{i}=\left(p_{t}^{i}, s_{t}^{i}, g_{t}^{i}, r_{t}^{i}\right)
$$

We pay to use the thermal power plant and we penalize the recourse:

$$
L_{t}^{i}\left(x_{t}^{i}, u_{t}^{i}, f_{t}^{i}, w_{t}^{i}\right)=\underbrace{\alpha_{t}^{i}\left(g_{t}^{i}\right)^{2}+\beta_{t}^{i} g_{t}^{i}}_{\text {quadratic cost }}+\underbrace{\kappa_{t}^{i} r_{t}^{i}}_{\text {recourse penalty }}
$$

A stochastic optimization problem decoupled in space

At each node i of the grid, we have to solve a stochastic optimal control subproblem depending on the grid flow process $\mathbf{F}^{i:}{ }^{2}$

$$
\begin{array}{rl}
J_{\mathfrak{P}}^{i}\left[\mathbf{F}^{i}\right]=\min _{\mathbf{x}^{i}, \mathbf{U}^{i}} & \mathbb{E}\left(\sum_{t=0}^{T-1} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{W}_{t+1}^{i}\right)+K^{i}\left(\mathbf{X}_{T}^{i}\right)\right), \\
\text { s.t. } & \mathbf{X}_{t+1}^{i}=f_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{W}_{t+1}^{i}\right), \\
& \mathbf{X}_{t}^{i} \in \mathcal{X}_{t}^{i, \text { ad }}, \quad \mathbf{U}_{t}^{i} \in \mathcal{U}_{t}^{i, \text { ad }} \\
& \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t},
\end{array}
$$

The last equation is the measurability constraint, where \mathcal{F}_{t} is the σ-field generated by the noises $\left\{\mathbf{W}_{\tau}^{i}\right\}_{\tau=1 \ldots, i=1 \ldots N}$ up to time t.

[^1]
Modeling exchanges between countries

The grid is represented by a directed graph $\mathcal{G}=(\mathcal{N}, \mathcal{A})$. At each time $t \in \llbracket 0, T-1 \rrbracket$ we have:

- a flow \mathbf{Q}_{t}^{a} through each arc a, inducing a $\operatorname{cost} c_{t}^{a}\left(\mathbf{Q}_{t}^{a}\right)$,
 modeling the exchange between two countries
- a grid flow \mathbf{F}_{t}^{i} at each node i, resulting from the balance equation

$$
\mathbf{F}_{t}^{i}=\sum_{a \in \text { input }(i)} \mathbf{Q}_{t}^{a}-\sum_{b \in \text { output }(i)} \mathbf{Q}_{t}^{b}
$$

A transport cost decoupled in time

At each time step $t \in \llbracket 0, T-1 \rrbracket$, we define the transport cost as the sum of the cost of the flows \mathbf{Q}_{t}^{a} through the arcs a of the grid:

$$
J_{\mathfrak{T}, t}\left[\mathbf{Q}_{t}\right]=\mathbb{E}\left(\sum_{a \in \mathcal{A}} c_{t}^{a}\left(\mathbf{Q}_{t}^{a}\right)\right),
$$

where the c_{t}^{a} 's are easy to compute functions (say quadratic).

Kirchhoff's law

The balance equation stating the conservation between \mathbf{Q}_{t} and \mathbf{F}_{t} rewrites in the following matrix form:

$$
A \mathbf{Q}_{t}+\mathbf{F}_{t}=0
$$

where A is the node-arc incidence matrix of the grid.

The overall production transport problem

The production cost $J_{\mathfrak{F}}$ aggregates the costs at all nodes i :

$$
J_{\mathfrak{P}}[\mathbf{F}]=\sum_{i \in \mathcal{N}} J_{\mathfrak{P}}^{i}\left[\mathbf{F}^{i}\right],
$$

and the transport cost $J_{\mathfrak{x}}$ aggregates the costs at all time t :

$$
J_{\mathfrak{T}}[\mathbf{Q}]=\sum_{t=0}^{T-1} J_{\mathfrak{T}, t}\left[\mathbf{Q}_{t}\right] .
$$

The compact production-transport problem formulation writes:

$$
\begin{array}{ll}
\min _{\mathbf{Q}, \mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}] \tag{P}\\
& \text { s.t. } A \mathbf{Q}+\mathbf{F}=0 .
\end{array}
$$

Resolution methods

Where are we heading to?

The problem \mathcal{P} has:

- N nodes (with $N=8$);
- T time steps (with $T=52$);
- N independent random variables per time step $t: \mathbf{W}_{t}^{1}, \cdots, \mathbf{W}_{t}^{N}$.

We aim to solve the problem numerically. We suppose that for all t, \mathbf{W}_{t}^{i} is a discrete random variable, with support size $\mathfrak{n}_{\text {bin }}$. We denote by

$$
\mathbf{W}_{t}=\left(\mathbf{W}_{t}^{1}, \cdots, \mathbf{W}_{t}^{N}\right),
$$

the global random variable at time t.

First idea: solving the whole problem inplace!

Write the problem and solve it!

First idea: solving the whole problem inplace!

Write the problem and solve it!
$\mathcal{P}:$

But ...

- $N=8$ nodes and $T=52$ time steps.
- Non-anticipativity constraint: we ought to formulate the problem on a tree (Stochastic Programming approach)
- We suppose that $\mathbf{W}_{t}^{1}, \cdots, \mathbf{W}_{t}^{N}$ are space independent. The support size of \mathbf{W}_{t} is equal to $\mathfrak{n}_{\text {bin }}^{N} \ldots$

$$
\text { number of nodes } \propto\left(\mathfrak{n}_{\text {bin }}^{N}\right)^{T}
$$

First idea: solving the whole problem inplace!

Write the problem and solve it!
$\mathcal{P}:$

But ...

- $N=8$ nodes and $T=52$ time steps.
- Non-anticipativity constraint: we ought to formulate the problem on a tree (Stochastic Programming approach)
- We suppose that $\mathbf{W}_{t}^{1}, \cdots, \mathbf{W}_{t}^{N}$ are space independent. The support size of \mathbf{W}_{t} is equal to $\mathfrak{n}_{\text {bin }}^{N} \ldots$

$$
\text { number of nodes } \propto\left(\mathfrak{n}_{\text {bin }}^{N}\right)^{T}
$$

$\mathfrak{n}_{\text {bin }}$	1	2	5
n leafs	1	$\approx 10^{125}$	$\approx 10^{290}$

Second idea: Dynamic Programming

We assume that the noise $\mathbf{W}_{0}, \cdots, \mathbf{W}_{T}$ are independent.
We decompose the problem time step by time step $\rightarrow T$ subproblems
\mathcal{P} :

Second idea: Dynamic Programming

We assume that the noise $\mathbf{W}_{0}, \cdots, \mathbf{W}_{T}$ are independent.
We decompose the problem time step by time step $\rightarrow T$ subproblems
\mathcal{P} :

We use Dynamic Programming to compute the value functions V_{1}, \cdots, V_{T}.

But ...

- N nodes: curse of dimensionality (8 decoupled stocks dynamics).
- Still a support size $\mathfrak{n}_{\text {bin }}^{N}$ for \mathbf{W}_{t}

We use Stochastic Dual Dynamic Programming to solve the problem with $N=8$ dimensions.

A brief recall on Stochastic Dynamic Programming

Dynamic Programming

We compute value functions with the backward equation:

$$
\begin{aligned}
& V_{T}(x)=K(x) \\
& V_{t}\left(x_{t}\right)=\min _{u_{t}} \mathbb{E}[\underbrace{L_{t}\left(x_{t}, u_{t}, \mathbf{W}_{t+1}\right)}_{\text {current cost }}+\underbrace{V_{t+1}\left(f\left(x_{t}, u_{t}, \mathbf{W}_{t+1}\right)\right)}_{\text {future costs }}]
\end{aligned}
$$

Stochastic Dual Dynamic Programming

- Convex value functions V_{t} are approximated as a
 supremum of a finite set of affine functions
- Affine functions (=cuts) are computed during forward/backward passes, till convergence

$$
\widetilde{V}_{t}(x)=\max _{1 \leq k \leq K}\left\{\lambda_{t}^{k} x+\beta_{t}^{k}\right\} \leq V_{t}(x)
$$

- SDDP makes an extensive use of LP/QP solver

A brief recall on Stochastic Dynamic Programming

Dynamic Programming

We compute value functions with the backward equation:

$$
\begin{aligned}
& V_{T}(x)=K(x) \\
& V_{t}\left(x_{t}\right)=\min _{u_{t}} \mathbb{E}[\underbrace{L_{t}\left(x_{t}, u_{t}, \mathbf{W}_{t+1}\right)}_{\text {current cost }}+\underbrace{V_{t+1}\left(f\left(x_{t}, u_{t}, \mathbf{W}_{t+1}\right)\right)}_{\text {future costs }}]
\end{aligned}
$$

Stochastic Dual Dynamic Programming

- Convex value functions V_{t} are approximated as a
 supremum of a finite set of affine functions
- Affine functions (=cuts) are computed during forward/backward passes, till convergence

$$
\widetilde{V}_{t}(x)=\max _{1 \leq k \leq K}\left\{\lambda_{t}^{k} x+\beta_{t}^{k}\right\} \leq V_{t}(x)
$$

- SDDP makes an extensive use of LP/QP solver

However, SDDP still has to deal with a noise \mathbf{W}_{t} with a support size $\mathfrak{n}_{\text {bin }}^{N} \cdots$

Introducing decentralized decomposition methods

$$
\begin{array}{ll}
\min _{\mathbf{Q}, \mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}] \tag{P}\\
& \text { s.t. } A \mathbf{Q}+\mathbf{F}=0
\end{array}
$$

Introducing decentralized decomposition methods

$$
\begin{aligned}
\min _{\mathbf{Q}, \mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}] \\
& \text { s.t. } A \mathbf{Q}+\mathbf{F}=0 \quad \sim \underbrace{\lambda}_{\text {price }} .
\end{aligned}
$$

Once the price λ is fixed, we can decompose the problem \mathcal{P} in 3 independent subproblems $\mathcal{P}_{1}, \cdots, \mathcal{P}_{3}$.

Introducing decentralized decomposition methods

$$
\begin{equation*}
\min _{\mathbf{O F}} J_{\mathfrak{F}}[\mathbf{F}]+J_{\mathfrak{Z}}[\mathbf{Q}] \tag{P}
\end{equation*}
$$

$$
\text { s.t. } A \mathbf{Q}+\mathbf{F}=0
$$

Once the price λ is fixed, we can decompose the problem \mathcal{P} in 3 independent subproblems $\mathcal{P}_{1}, \cdots, \mathcal{P}_{3}$.

Dual decomposition:

- Fix a voltage $\lambda^{(k)}$
- Decouple the problem node by node
- Solve P_{1}, \cdots, P_{3} by Dynamic Programming and get an outflow \mathbf{F}
- Solve transport problem and get flow \mathbf{Q}
- Update λ with:

$$
\lambda^{(k+1)}=\lambda^{(k)}+\rho \times \underbrace{(A \mathbf{Q}+\mathbf{F})}_{=0 \text { if equilibrium }}
$$

Recalling the original problem

$$
\begin{aligned}
\min _{\mathbf{Q}, \mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}] \\
& \text { s.t. } A \mathbf{Q}+\mathbf{F}=0 .
\end{aligned}
$$

where

- $J_{\mathfrak{P}}(\mathbf{F})=\sum_{i=1}^{N} J_{\mathfrak{P}}^{i}\left(\mathbf{F}^{i}\right)$ with

$$
\begin{aligned}
J_{\mathfrak{P}}^{i}\left[\mathbf{F}^{i}\right]=\min _{\mathbf{x}^{i}, \mathbf{U}^{i}} \mathbb{E}\left(\sum_{t=0}^{T-1} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{W}_{t+1}^{i}\right)+K^{i}\left(\mathbf{X}_{T}^{i}\right)\right) \\
\text { s.t. lot of constraints }
\end{aligned}
$$

- $\mathbf{F}=\mathbf{F}_{0}, \cdots, \mathbf{F}_{T-1}$ is a process,
- so is $\mathbf{Q}=\mathbf{Q}_{0}, \cdots, \mathbf{Q}_{T-1}$.
$\leadsto \lambda$ appears to be also a time process ...

Decomposition appears more complicated than expected

$$
\lambda^{(k)}=\left(\lambda_{1}^{(k)}, \lambda_{2}^{(k)}, \cdots, \lambda_{T}^{(k)}\right) \text { is a processus, }
$$

$$
\left\{f \mid f \preceq \sigma\left(\mathbf{W}_{0}, \cdots, \mathbf{W}_{t}\right)\right\}
$$ correlated in time:

- $\lambda_{t}^{(k)}$ depends on past history

$$
\lambda_{t}^{(k)}=\phi_{t}\left(\mathbf{W}_{0}, \cdots, \mathbf{W}_{t}\right) \ldots
$$

- ... and $\lambda^{(k)}$ is a "noise" in the subproblems P_{1}, \cdots, P_{N}

Decomposition appears more complicated than expected

$$
\left\{f \mid f \preceq \sigma\left(\mathbf{W}_{0}, \cdots, \mathbf{W}_{t}\right)\right\}
$$

$\lambda^{(k)}=\left(\lambda_{1}^{(k)}, \lambda_{2}^{(k)}, \cdots, \lambda_{T}^{(k)}\right)$ is a processus, correlated in time:

- $\lambda_{t}^{(k)}$ depends on past history

$$
\lambda_{t}^{(k)}=\phi_{t}\left(\mathbf{W}_{0}, \cdots, \mathbf{W}_{t}\right) \ldots
$$

- ... and $\lambda^{(k)}$ is a "noise" in the subproblems P_{1}, \cdots, P_{N}

We use a relaxation to overcome this issue:

- We introduce an information process \mathbf{Y}_{t}, whose dynamics is known

Decomposition appears more complicated than expected

$\lambda^{(k)}=\left(\lambda_{1}^{(k)}, \lambda_{2}^{(k)}, \cdots, \lambda_{T}^{(k)}\right)$ is a processus, correlated in time:

- $\lambda_{t}^{(k)}$ depends on past history

$$
\lambda_{t}^{(k)}=\phi_{t}\left(\mathbf{W}_{0}, \cdots, \mathbf{W}_{t}\right) \ldots
$$

- ... and $\lambda^{(k)}$ is a "noise" in the subproblems P_{1}, \cdots, P_{N}

We use a relaxation to overcome this issue:

- We introduce an information process \mathbf{Y}_{t}, whose dynamics is known
- We approximate $\lambda_{t}^{(k)}$ by its conditional expectation w.r.t. \mathbf{Y}_{t}

$$
\tilde{\lambda}_{t}^{(k)}=\mathbb{E}\left(\lambda_{t}^{(k)} \mid \mathbf{Y}_{t}\right)
$$

Price decomposition

The production and transport optimization problem writes

$$
\begin{equation*}
\min _{\mathbf{Q}, \mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}] \quad \text { s.t. } \quad A \mathbf{Q}+\mathbf{F}=0 . \tag{P}
\end{equation*}
$$

The decomposition scheme consists in:

1. dualizing the constraint,
2. approximating the multiplier $\boldsymbol{\lambda}$ by its conditional expectation w.r.t. \mathbf{Y}.

This trick leads to the following problem

$$
\max _{\boldsymbol{\lambda}} \min _{\mathbf{Q}, \mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}]+\langle\mathbb{E}(\boldsymbol{\lambda} \mid \mathbf{Y}), A \mathbf{Q}+\mathbf{F}\rangle
$$

A dual gradient-like algorithm

Applying the Uzawa algorithm to the dual problem

$$
\max _{\boldsymbol{\lambda}} \min _{\mathbf{Q}, \mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}]+\langle\mathbb{E}(\boldsymbol{\lambda} \mid \mathbf{Y}), A \mathbf{Q}+\mathbf{F}\rangle
$$

leads to a decomposition between production and transport:

$$
\begin{array}{ll}
\mathbf{F}^{(k+1)} \in \underset{\mathbf{F}}{\arg \min } J_{\mathfrak{F}}[\mathbf{F}]+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right), \mathbf{F}\right\rangle, & \text { Produ } \\
\mathbf{Q}^{(k+1)} \in \underset{\mathbf{Q}}{\arg \min } J_{\mathfrak{E}}[\mathbf{Q}]+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right), A \mathbf{Q}\right\rangle, & \text { Trans } \\
\mathbb{E}\left(\boldsymbol{\lambda}^{(k+1)} \mid \mathbf{Y}\right)=\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right)+\rho \mathbb{E}\left(A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)} \mid \mathbf{Y}\right) \text {. } & \text { Update }
\end{array}
$$

Decomposing the production problem

The production subproblem

$$
\min _{\mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}]+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right), \mathbf{F}\right\rangle,
$$

evidently decomposes node by node

$$
\min _{\mathbf{F}^{i}} J_{\mathfrak{P}}^{j}\left[\mathbf{F}^{i}\right]+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}^{i,(k)} \mid \mathbf{Y}\right), \mathbf{F}^{i}\right\rangle,
$$

hence a stochastic optimal control subproblem for each node i :

$$
\begin{array}{rl}
\min _{\mathbf{x}^{i}, \mathbf{U}^{i}, \mathbf{F}^{i}} & \mathbb{E}\left(\sum_{t=0}^{T-1}\left(L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{W}_{t+1}\right)+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}_{t}^{i,(k)} \mid \mathbf{Y}_{t}\right), \mathbf{F}_{t}^{i}\right\rangle\right)+K^{i}\left(\mathbf{X}_{T}^{i}\right)\right) \\
\text { s.t. } & \mathbf{X}_{t+1}^{i}=f_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{W}_{t+1}\right) \\
& \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t} .
\end{array}
$$

Solving the production subproblems by DP

Assuming that

- the process \mathbf{W} is a white noise,
- the process \mathbf{Y} follows a dynamics $\mathbf{Y}_{t+1}=h_{t}\left(\mathbf{Y}_{t}, \mathbf{W}_{t+1}\right)$,

Then $\left(\mathbf{X}_{t}, \mathbf{Y}_{t}\right)$ is a valid state to apply Dynamic Programming:

$$
\begin{array}{rl}
V_{T}^{i}(x, y)= & K^{i}(x) \\
V_{t}^{i}(x, y)=\min _{u, f} & \mathbb{E}\left(L_{t}^{i}\left(x, u, f, \mathbf{W}_{t+1}\right)\right. \\
& \left.+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}_{t}^{i,(k)} \mid \mathbf{Y}_{t}=y\right), f\right\rangle+V_{t+1}^{i}\left(\mathbf{X}_{t+1}^{i}, \mathbf{Y}_{t+1}\right)\right) \\
\text { s.t. } & \mathbf{X}_{t+1}^{i}=f_{t}^{i}\left(x, u, f, \mathbf{W}_{t+1}\right), \\
& \mathbf{Y}_{t+1}=h_{t}\left(y, \mathbf{W}_{t+1}\right) .
\end{array}
$$

Where are we heading to?

- Solving directly the problem is not numerically tractable
- SDDP allows to solve the problem, but still has to deal with a noise \mathbf{W}_{t} with size $\mathfrak{n}_{\text {bin }}^{N} \ldots$
- Price decomposition allows to decompose the problem in N independent subproblems

Now, we aim to compare numerically SDDP and DADP.

Numerical implementation

Our stack is deeply rooted in Julia language

- Modeling Language: JuMP
- Open-source SDDP Solver: StochDynamicProgramming.jl
- LP/QP Solver: Gurobi 7.02
https://github.com/JuliaOpt/StochDynamicProgramming.jl

Implementation of SDDP and DADP

- Implementing SDDP is straightforward (but still a noise \mathbf{W}_{t} with size $\mathfrak{n}_{\text {bin }}^{N} \ldots$)

Implementation of SDDP and DADP

- Implementing SDDP is straightforward (but still a noise \mathbf{W}_{t} with size $\mathfrak{n}_{\text {bin }}^{N} \ldots$)
- DADP is more elaborated. The difficulty lies in the update scheme:

$$
\mathbb{E}\left(\boldsymbol{\lambda}^{(k+1)} \mid \mathbf{Y}\right)=\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right)+\rho \mathbb{E}\left(A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)} \mid \mathbf{Y}\right)
$$

We use a crude relaxation: $\mathbf{Y}=0$. Denoting $\underline{\lambda}^{(k)}=\mathbb{E}\left(\boldsymbol{\lambda}^{(k)}\right)$, the update becomes

$$
\underline{\lambda}^{(k+1)}=\underline{\lambda}^{(k)}+\underbrace{\rho}_{\text {Update step }} \underbrace{\mathbb{E}\left(A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)}\right)}_{\text {Monte Carlo }}
$$

Implementing gradient ascent

- Gradient ascent is too slow ...
- We try to implement accelerated gradient ascent ${ }^{3}$ but ...
- Unfortunately, we do not know the Lipschitz constant of the derivative!
- The line-search kills the performance of gradient ascent...

[^2]
Implementing gradient ascent

- Gradient ascent is too slow ...
- We try to implement accelerated gradient ascent ${ }^{3}$ but ...
- Unfortunately, we do not know the Lipschitz constant of the derivative!
- The line-search kills the performance of gradient ascent...

To overcome this issue, we use Quasi-Newton (BFGS): the update becomes

$$
\underline{\lambda}^{(k+1)}=\underline{\lambda}^{(k)}+\rho^{(k)} W^{(k)} \hat{\mathbb{E}}\left\{A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)}\right\}
$$

- We exploit the strong-convexity,
- The line-search is penalized by inexact gradient (especially near convergence where the algorithm requires precision)

[^3]
Adding an augmented Lagrangian

Let first introduce the augmented Lagrangian corresponding to the relaxed problem:

$$
\mathcal{L}(\mathbf{F}, \mathbf{Q}, \boldsymbol{\lambda})=J_{\mathfrak{P}}(\mathbf{F})+J_{\mathfrak{T}}(\mathbf{Q})+\langle\boldsymbol{\lambda}, \mathbb{E}(A \mathbf{Q}+\mathbf{F} \mid \mathbf{Y})\rangle+\frac{\rho}{2}\|\mathbb{E}(A \mathbf{Q}+\mathbf{F} \mid \mathbf{Y})\|^{2}
$$

If a saddle point exists, the problem is equivalent to:

$$
\max _{\boldsymbol{\lambda}} \min _{\mathbf{F}, \mathbf{Q}} \mathcal{L}(\mathbf{F}, \mathbf{Q}, \boldsymbol{\lambda}) .
$$

Adding an augmented Lagrangian

Let first introduce the augmented Lagrangian corresponding to the relaxed problem:
$\mathcal{L}(\mathbf{F}, \mathbf{Q}, \boldsymbol{\lambda})=J_{\mathfrak{P}}(\mathbf{F})+J_{\mathfrak{T}}(\mathbf{Q})+\langle\boldsymbol{\lambda}, \mathbb{E}(A \mathbf{Q}+\mathbf{F} \mid \mathbf{Y})\rangle+\frac{\rho}{2}\|\mathbb{E}(A \mathbf{Q}+\mathbf{F} \mid \mathbf{Y})\|^{2}$.
If a saddle point exists, the problem is equivalent to:

$$
\max _{\boldsymbol{\lambda}} \min _{\mathbf{F}, \mathbf{Q}} \mathcal{L}(\mathbf{F}, \mathbf{Q}, \boldsymbol{\lambda}) .
$$

ADMM solves iteratively the subproblems $J_{\mathfrak{P}}$ and $J_{\mathfrak{T}}$, and updates the multiplier $\boldsymbol{\lambda}$ with a constant step-size ρ :

$$
\begin{aligned}
& \mathbf{F}^{(k+1)}=\underset{\mathbf{F}}{\arg \min } J_{\mathfrak{P}}(\mathbf{F})+\left\langle\boldsymbol{\lambda}^{(k)}, \mathbf{F}\right\rangle+\frac{\rho}{2}\left\|\mathbb{E}\left(A \mathbf{Q}^{(k)}\right)+\mathbf{F}\right\|^{2} \\
& \mathbf{Q}^{(k+1)}=\underset{\mathbf{Q}}{\arg \min } J_{\mathfrak{T}}(\mathbf{Q})+\left\langle\boldsymbol{\lambda}^{(k)}, A \mathbf{Q}\right\rangle+\frac{\rho}{2}\left\|A \mathbf{Q}+\mathbb{E}\left(\mathbf{F}^{(k+1)}\right)\right\|^{2} \\
& \boldsymbol{\lambda}^{(k+1)}=\boldsymbol{\lambda}^{(k)}+\rho \mathbb{E}\left(A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)}\right) .
\end{aligned}
$$

Double, double toil and trouble

Digesting the stochastic caldron, between time and space ...

- Global problem \mathcal{P}

$$
\begin{aligned}
\min _{\mathbf{Q}, \mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}] \\
& \text { s.t. } A \mathbf{Q}+\mathbf{F}=0 .
\end{aligned}
$$

- Decomposed production subproblem \mathcal{P}_{i}

$$
\min _{\mathbf{F}^{i}} J_{\mathfrak{P}}\left(\mathbf{F}^{i}\right)+\left\langle\lambda^{i,(k)}, \mathbf{F}^{i}\right\rangle
$$

- DP subproblem V_{t}^{i}

$$
\begin{array}{rl}
v_{t}^{i}(x, y)=\min _{u, f} & \mathbb{E}\left(L_{t}^{i}\left(x, u, f, \mathbf{w}_{t+1}\right)\right. \\
& \left.+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}_{t}^{i,(k)} \mid \mathbf{Y}_{t}=y\right), f\right\rangle+v_{t+1}^{i}\left(\mathbf{x}_{t+1}^{i}, \mathbf{Y}_{t+1}\right)\right)
\end{array}
$$

SDDP convergence

Figure 1: Convergence of SDDP's upper and lower bounds ($T=52, \mathfrak{n}_{\text {bin }}=2$).

Multipliers convergence

Figure 2: Convergence of multipliers with BFGS $\left(T=52, \mathfrak{n}_{b i n}=2\right)$.

ADMM convergence

Figure 3: Convergence of ADMM, plotting the logarithm of the norm of the primal residual ($T=52, \mathfrak{n}_{\text {bin }}=2$).

Results — Weekly time steps

Compute Bellman value functions at weekly time steps ($T=52$).

$\mathfrak{n}_{\text {bin }}$	1	2	5
SDDP value	9.396	9.687	$+\infty$
SDDP time	$8^{\prime \prime}$	$928^{\prime \prime}$	$+\infty$
BFGS value	9.411	9.687	9.974
BFGS time	$69^{\prime \prime}$	$157^{\prime \prime}$	$575^{\prime \prime}$
ADMM value	9.404	9.682	9.984
ADMM time	$65^{\prime \prime}$	$326^{\prime \prime}$	$643^{\prime \prime}$

- SDDP does not converge if $\mathfrak{n}_{\text {bin }}=5$.

Results — Weekly time steps

Compute Bellman value functions at weekly time steps ($T=52$).

$\mathfrak{n}_{\text {bin }}$	1	2	5
SDDP value	9.396	9.687	$+\infty$
SDDP time	$8^{\prime \prime}$	$928^{\prime \prime}$	$+\infty$
BFGS value	9.411	9.687	9.974
BFGS time	$69^{\prime \prime}$	$157^{\prime \prime}$	$575^{\prime \prime}$
ADMM value	9.404	9.682	9.984
ADMM time	$65^{\prime \prime}$	$326^{\prime \prime}$	$643^{\prime \prime}$

- SDDP does not converge if $\mathfrak{n}_{\text {bin }}=5$.
- If $\mathfrak{n}_{\text {bin }}=1$, results of SDDP, BFGS and ADMM are almost equivalent.

Results — Weekly time steps

Compute Bellman value functions at weekly time steps ($T=52$).

$\mathfrak{n}_{\text {bin }}$	1	2	5
SDDP value	9.396	9.687	$+\infty$
SDDP time	$8^{\prime \prime}$	$928^{\prime \prime}$	$+\infty$
BFGS value	9.411	9.687	9.974
BFGS time	$69^{\prime \prime}$	$157^{\prime \prime}$	$575^{\prime \prime}$
ADMM value	9.404	9.682	9.984
ADMM time	$65^{\prime \prime}$	$326^{\prime \prime}$	$643^{\prime \prime}$

- SDDP does not converge if $\mathfrak{n}_{\text {bin }}=5$.
- If $\mathfrak{n}_{\text {bin }}=1$, results of SDDP, BFGS and ADMM are almost equivalent.
- BFGS and ADMM compute a gradient with Monte-Carlo ...

Results — Weekly time steps

Compute Bellman value functions at weekly time steps ($T=52$).

$\mathfrak{n}_{\text {bin }}$	1	2	5
SDDP value	9.396	9.687	$+\infty$
SDDP time	$8^{\prime \prime}$	$928^{\prime \prime}$	$+\infty$
BFGS value	9.411	9.687	9.974
BFGS time	$69^{\prime \prime}$	$157^{\prime \prime}$	$575^{\prime \prime}$
ADMM value	9.404	9.682	9.984
ADMM time	$65^{\prime \prime}$	$326^{\prime \prime}$	$643^{\prime \prime}$

- SDDP does not converge if $\mathfrak{n}_{\text {bin }}=5$.
- If $\mathfrak{n}_{\text {bin }}=1$, results of SDDP, BFGS and ADMM are almost equivalent.
- BFGS and ADMM compute a gradient with Monte-Carlo ...
- Here, BFGS is penalized by line-search, and stops earlier if no search direction is found.

Conclusion

Conclusion

Conclusion

- A survey of different algorithms, mixing spatial and time decomposition.
- DADP works well with the crude relaxation $\mathbf{Y}=0$.
- SDDP does not converge in a finite time if $\mathfrak{n}_{b i n}=5$.
- We had a lot of troubles to deal with approximate gradients!

Perspectives

- Find a proper information process \mathbf{Y}.
- Improve the integration between SDDP and DADP.
- Test other decomposition schemes (by quantity, by prediction).

P. Girardeau.

Résolution de grands problèmes en optimisation stochastique dynamique.
Thèse de doctorat, Université Paris-Est, 2010.
\square V. Leclère.

Contributions aux méthodes de décomposition en optimisation stochastique.
Thèse de doctorat, Université Paris-Est, 2014.A. Lenoir and P. Mahey.

A survey of monotone operator splitting methods and decomposition of convex programs.

RAIRO Operations Research 51, 17-41, 2017.
Philippe Mahey, Jonas Koko, Arnaud Lenoir and Luc Marchand.
Coupling decomposition with dynamic programming for a stochastic spatial model for long-term energy pricing problem.

Dams trajectory

SGD convergence

Plotting the convergence with $T=52$ and $\mathfrak{n}_{\text {bin }}=2$.

[^0]: ${ }^{1}$ But the framework remains valid for smaller energy management problems.

[^1]: ${ }^{2}$ The notation $J_{\mathfrak{P}}^{i}[\cdot]$ means that the argument of $J_{\mathfrak{W}}^{i}$ is a random variable.

[^2]: ${ }^{3}$ described in the seminal paper of Nesterov

[^3]: ${ }^{3}$ described in the seminal paper of Nesterov

