
Optimization of Energy

Production and Transport

A stochastic decomposition approach

P. Carpentier, J.-P. Chancelier, A. Lenoir, F. Pacaud

PGMO Days — November 14, 2017

ENSTA ParisTech — ENPC ParisTech — EDF Lab — Efficacity

1/32

Managing the network at European scale

Motivation

An energy production and transport optimization problem on a grid

modeling energy exchange across European countries.1

FRA

SPAPT

UK
BEL

GER

SWI

ITA

• Stochastic dynamical problem

• Discrete time formulation (weekly time steps)

• Large-scale problem (8 countries)

1But the framework remains valid for smaller energy management problems.
3/32

Lecture outline

Modeling

Resolution methods

Stochastic Programming

Time decomposition

Spatial decomposition

Numerical implementation

Conclusion

4/32

Modeling

Production at each node of the grid

At each node i of the grid, we formulate a production problem on a

discrete time horizon J0,T K, involving the following variables at each

time t:

Wi
t

Xi
t

Ui
t

Qa
t

Qb
t

Fi
t

• Xi
t : state variable

(dam volume)

• Ui
t : control variable

(energy production)

• Fi
t : grid flow

(import/export from the grid)

• Wi
t : noise

(consumption, renewable)

5/32

Writing the problem for each node

For each node i ∈ J1,NK:

• The dynamics x it+1 = f it (x it , u
i
t ,w

i
t) writes

x it+1 = x it + ait︸︷︷︸
inflow

− pit︸︷︷︸
turbinate

− s it︸︷︷︸
spillage

.

• The load balance (supply = demand) gives

pit︸︷︷︸
turbinate

+ g i
t︸︷︷︸

thermal

+ r it︸︷︷︸
recourse

+ f it︸︷︷︸
grid flow

= d i
t︸︷︷︸

demand

.

Thus, we explicit w i
t and uit

w i
t = (ait , d

i
t) , uit = (pit , s

i
t , g

i
t , r

i
t) .

We pay to use the thermal power plant and we penalize the recourse:

Lit(x
i
t , u

i
t , f

i
t ,w

i
t) = αi

t(g
i
t)2 + βi

tg
i
t︸ ︷︷ ︸

quadratic cost

+ κitr
i
t︸︷︷︸

recourse penalty

.

6/32

Writing the problem for each node

For each node i ∈ J1,NK:

• The dynamics x it+1 = f it (x it , u
i
t ,w

i
t) writes

x it+1 = x it + ait︸︷︷︸
inflow

− pit︸︷︷︸
turbinate

− s it︸︷︷︸
spillage

.

• The load balance (supply = demand) gives

pit︸︷︷︸
turbinate

+ g i
t︸︷︷︸

thermal

+ r it︸︷︷︸
recourse

+ f it︸︷︷︸
grid flow

= d i
t︸︷︷︸

demand

.

Thus, we explicit w i
t and uit

w i
t = (ait , d

i
t) , uit = (pit , s

i
t , g

i
t , r

i
t) .

We pay to use the thermal power plant and we penalize the recourse:

Lit(x
i
t , u

i
t , f

i
t ,w

i
t) = αi

t(g
i
t)2 + βi

tg
i
t︸ ︷︷ ︸

quadratic cost

+ κitr
i
t︸︷︷︸

recourse penalty

.

6/32

A stochastic optimization problem decoupled in space

At each node i of the grid, we have to solve a stochastic optimal control

subproblem depending on the grid flow process Fi :2

J iP[Fi] = min
Xi ,Ui

E
(T−1∑

t=0

Lit(Xi
t ,U

i
t ,F

i
t ,W

i
t+1) + K i (Xi

T)
)
,

s.t. Xi
t+1 = f it (Xi

t ,U
i
t ,F

i
t ,W

i
t+1) ,

Xi
t ∈ X

i,ad

t , Ui
t ∈ U

i,ad

t ,

Ui
t � Ft ,

The last equation is the measurability constraint, where Ft is

the σ-field generated by the noises {Wi
τ}τ=1...t,i=1...N up to time t.

2The notation J iP[·] means that the argument of J iP is a random variable.

7/32

Modeling exchanges between countries

The grid is represented by a directed graph G = (N ,A). At each time

t ∈ J0,T − 1K we have:

Fi
t

Qa
t

• a flow Qa
t through each arc a,

inducing a cost cat (Qa
t),

modeling the exchange between

two countries

• a grid flow Fi
t at each node i ,

resulting from the balance

equation

Fi
t =

∑
a∈input(i)

Qa
t −

∑
b∈output(i)

Qb
t

8/32

A transport cost decoupled in time

At each time step t ∈ J0,T − 1K , we define the transport cost as the

sum of the cost of the flows Qa
t through the arcs a of the grid:

JT,t [Qt] = E
(∑

a∈A
cat (Qa

t)
)
,

where the cat ’s are easy to compute functions (say quadratic).

Kirchhoff’s law

The balance equation stating the conservation between Qt and Ft

rewrites in the following matrix form:

AQt + Ft = 0 ,

where A is the node-arc incidence matrix of the grid.

9/32

The overall production transport problem

The production cost JP aggregates the costs at all nodes i :

JP[F] =
∑
i∈N

J iP[Fi] ,

and the transport cost JT aggregates the costs at all time t:

JT[Q] =
T−1∑
t=0

JT,t [Qt] .

The compact production-transport problem formulation writes:

min
Q,F

JP[F] + JT[Q] (P)

s.t. AQ + F = 0 .

10/32

Resolution methods

Where are we heading to?

The problem P has:

• N nodes (with N = 8);

• T time steps (with T = 52);

• N independent random variables per time step t: W1
t , · · · ,WN

t .

We aim to solve the problem numerically. We suppose that for all t,

Wi
t is a discrete random variable, with support size nbin. We denote by

Wt = (W1
t , · · · ,W

N
t) ,

the global random variable at time t.

11/32

First idea: solving the whole problem inplace!

Write the problem and solve it!

P :

But ...

• N = 8 nodes and T = 52 time steps.

• Non-anticipativity constraint: we ought to formulate

the problem on a tree (Stochastic Programming approach)

• We suppose that W1
t , · · · ,WN

t are space independent. The support size of Wt is

equal to nNbin ...

number of nodes ∝ (nNbin)T

nbin 1 2 5

n leafs 1 ≈ 10125 ≈ 10290

12/32

First idea: solving the whole problem inplace!

Write the problem and solve it!

P :

But ...

• N = 8 nodes and T = 52 time steps.

• Non-anticipativity constraint: we ought to formulate

the problem on a tree (Stochastic Programming approach)

• We suppose that W1
t , · · · ,WN

t are space independent. The support size of Wt is

equal to nNbin ...

number of nodes ∝ (nNbin)T

nbin 1 2 5

n leafs 1 ≈ 10125 ≈ 10290

12/32

First idea: solving the whole problem inplace!

Write the problem and solve it!

P :

But ...

• N = 8 nodes and T = 52 time steps.

• Non-anticipativity constraint: we ought to formulate

the problem on a tree (Stochastic Programming approach)

• We suppose that W1
t , · · · ,WN

t are space independent. The support size of Wt is

equal to nNbin ...

number of nodes ∝ (nNbin)T

nbin 1 2 5

n leafs 1 ≈ 10125 ≈ 10290

12/32

Second idea: Dynamic Programming

We assume that the noise W0, · · · ,WT are independent.

We decompose the problem time step by time step → T subproblems

P : V1 V2 V3 VT

We use Dynamic Programming to compute the

value functions V1, · · · ,VT .

But ...

• N nodes: curse of dimensionality (8 decoupled stocks dynamics).

• Still a support size nNbin for Wt

We use Stochastic Dual Dynamic Programming to solve the problem

with N = 8 dimensions.

13/32

Second idea: Dynamic Programming

We assume that the noise W0, · · · ,WT are independent.

We decompose the problem time step by time step → T subproblems

P : V1 V2 V3 VT

We use Dynamic Programming to compute the

value functions V1, · · · ,VT .

But ...

• N nodes: curse of dimensionality (8 decoupled stocks dynamics).

• Still a support size nNbin for Wt

We use Stochastic Dual Dynamic Programming to solve the problem

with N = 8 dimensions.

13/32

A brief recall on Stochastic Dynamic Programming

Dynamic Programming

We compute value functions with the backward equation:

VT (x) = K(x)

Vt(xt) = min
ut

E
[
Lt(xt , ut ,Wt+1)︸ ︷︷ ︸

current cost

+Vt+1

(
f (xt , ut ,Wt+1)

)
︸ ︷︷ ︸

future costs

]

Stochastic Dual Dynamic Programming

10 5 0 5 10
x

0

20

40

60

80

100

y

• Convex value functions Vt are approximated as a

supremum of a finite set of affine functions

• Affine functions (=cuts) are computed during

forward/backward passes, till convergence

Ṽt(x) = max
1≤k≤K

{
λkt x + βk

t

}
≤ Vt(x)

• SDDP makes an extensive use of LP/QP solver

However, SDDP still has to deal with a noise Wt with a support size nNbin...

14/32

A brief recall on Stochastic Dynamic Programming

Dynamic Programming

We compute value functions with the backward equation:

VT (x) = K(x)

Vt(xt) = min
ut

E
[
Lt(xt , ut ,Wt+1)︸ ︷︷ ︸

current cost

+Vt+1

(
f (xt , ut ,Wt+1)

)
︸ ︷︷ ︸

future costs

]

Stochastic Dual Dynamic Programming

10 5 0 5 10
x

0

20

40

60

80

100

y

• Convex value functions Vt are approximated as a

supremum of a finite set of affine functions

• Affine functions (=cuts) are computed during

forward/backward passes, till convergence

Ṽt(x) = max
1≤k≤K

{
λkt x + βk

t

}
≤ Vt(x)

• SDDP makes an extensive use of LP/QP solver

However, SDDP still has to deal with a noise Wt with a support size nNbin...
14/32

Introducing decentralized decomposition methods

P1

P1

P1
qa

qb

qc

min
Q,F

JP[F] + JT[Q] (P)

s.t. AQ + F = 0

; λ︸︷︷︸
price

.

Once the price λ is fixed, we can decompose
the problem P in 3 independent subproblems

P1, · · · ,P3.

P1

λ
(k)
1

P2

λ
(k)
2

P3

λ
(k)
3

//
//

//

Dual decomposition:

• Fix a voltage λ(k)

• Decouple the problem node by node

• Solve P1, · · · ,P3 by Dynamic Programming

and get an outflow F

• Solve transport problem and get flow Q

• Update λ with:

λ(k+1) = λ(k) + ρ× (AQ + F)︸ ︷︷ ︸
=0 if equilibrium

15/32

Introducing decentralized decomposition methods

P1

λ1

P1

λ2

P1

λ3

qa

qb

qc

min
Q,F

JP[F] + JT[Q] (P)

s.t. AQ + F = 0 ; λ︸︷︷︸
price

.

Once the price λ is fixed, we can decompose
the problem P in 3 independent subproblems

P1, · · · ,P3.

P1

λ
(k)
1

P2

λ
(k)
2

P3

λ
(k)
3

//
//

//

Dual decomposition:

• Fix a voltage λ(k)

• Decouple the problem node by node

• Solve P1, · · · ,P3 by Dynamic Programming

and get an outflow F

• Solve transport problem and get flow Q

• Update λ with:

λ(k+1) = λ(k) + ρ× (AQ + F)︸ ︷︷ ︸
=0 if equilibrium

15/32

Introducing decentralized decomposition methods

P1

λ1

P1

λ2

P1

λ3

qa

qb

qc

min
Q,F

JP[F] + JT[Q] (P)

s.t. AQ + F = 0 ; λ︸︷︷︸
price

.

Once the price λ is fixed, we can decompose
the problem P in 3 independent subproblems

P1, · · · ,P3.

P1

λ
(k)
1

P2

λ
(k)
2

P3

λ
(k)
3

//
//

//

Dual decomposition:

• Fix a voltage λ(k)

• Decouple the problem node by node

• Solve P1, · · · ,P3 by Dynamic Programming

and get an outflow F

• Solve transport problem and get flow Q

• Update λ with:

λ(k+1) = λ(k) + ρ× (AQ + F)︸ ︷︷ ︸
=0 if equilibrium

15/32

Recalling the original problem

min
Q,F

JP[F] + JT[Q] (P)

s.t. AQ + F = 0 .

where

• JP(F) =
∑N

i=1 J
i
P(Fi) with

J iP[Fi] = min
Xi ,Ui

E
(T−1∑

t=0

Lit(Xi
t ,U

i
t ,F

i
t ,W

i
t+1) + K i (Xi

T)
)
,

s.t. lot of constraints

• F = F0, · · · ,FT−1 is a process,

• so is Q = Q0, · · · ,QT−1.

; λ appears to be also a time process ...

16/32

Decomposition appears more complicated than expected

{
f |f � σ(W0, · · · ,Wt)

}
λt

σ(Yt)

λ̃t

λ(k) = (λ
(k)
1 , λ

(k)
2 , · · · , λ(k)

T) is a processus,

correlated in time:

• λ(k)
t depends on past history

λ
(k)
t = φt(W0, · · · ,Wt) . . .

• ... and λ(k) is a ”noise” in the

subproblems P1, · · · ,PN

We use a relaxation to overcome this issue:

• We introduce an information process Yt ,

whose dynamics is known

• We approximate λ
(k)
t by its conditional

expectation w.r.t. Yt

λ̃
(k)
t = E

(
λ

(k)
t |Yt

)

17/32

Decomposition appears more complicated than expected

{
f |f � σ(W0, · · · ,Wt)

}
λt

σ(Yt)

λ̃t

λ(k) = (λ
(k)
1 , λ

(k)
2 , · · · , λ(k)

T) is a processus,

correlated in time:

• λ(k)
t depends on past history

λ
(k)
t = φt(W0, · · · ,Wt) . . .

• ... and λ(k) is a ”noise” in the

subproblems P1, · · · ,PN

We use a relaxation to overcome this issue:

• We introduce an information process Yt ,

whose dynamics is known

• We approximate λ
(k)
t by its conditional

expectation w.r.t. Yt

λ̃
(k)
t = E

(
λ

(k)
t |Yt

)

17/32

Decomposition appears more complicated than expected

{
f |f � σ(W0, · · · ,Wt)

}
λt

σ(Yt)

λ̃t

λ(k) = (λ
(k)
1 , λ

(k)
2 , · · · , λ(k)

T) is a processus,

correlated in time:

• λ(k)
t depends on past history

λ
(k)
t = φt(W0, · · · ,Wt) . . .

• ... and λ(k) is a ”noise” in the

subproblems P1, · · · ,PN

We use a relaxation to overcome this issue:

• We introduce an information process Yt ,

whose dynamics is known

• We approximate λ
(k)
t by its conditional

expectation w.r.t. Yt

λ̃
(k)
t = E

(
λ

(k)
t |Yt

)
17/32

Price decomposition

The production and transport optimization problem writes

min
Q,F

JP[F] + JT[Q] s.t. AQ + F = 0 .
(
P
)

The decomposition scheme consists in:

1. dualizing the constraint,

2. approximating the multiplier λ by its conditional expectation w.r.t. Y.

This trick leads to the following problem

max
λ

min
Q,F

JP[F] + JT[Q] +
〈
E(λ | Y) ,AQ + F

〉
.

18/32

A dual gradient-like algorithm

Applying the Uzawa algorithm to the dual problem

max
λ

min
Q,F

JP[F] + JT[Q] +
〈
E(λ | Y) ,AQ + F

〉
,

leads to a decomposition between production and transport:

F(k+1) ∈ arg min
F

JP[F] +
〈
E
(
λ(k)

∣∣ Y
)
,F
〉
, Production

Q(k+1) ∈ arg min
Q

JT[Q] +
〈
E
(
λ(k)

∣∣ Y
)
,AQ

〉
, Transport

E
(
λ(k+1)

∣∣ Y
)

= E
(
λ(k)

∣∣ Y
)

+ ρ E
(
AQ(k+1) + F(k+1)

∣∣ Y
)
. Update

19/32

Decomposing the production problem

The production subproblem

min
F

JP[F] +
〈
E
(
λ(k)

∣∣ Y
)
,F
〉
,

evidently decomposes node by node

min
Fi

J iP[Fi] +
〈
E
(
λi,(k)

∣∣ Y
)
,Fi
〉
,

hence a stochastic optimal control subproblem for each node i :

min
Xi ,Ui ,Fi

E
(T−1∑

t=0

(
Li
t(Xi

t ,U
i
t ,F

i
t ,Wt+1) +

〈
E
(
λ

i,(k)
t

∣∣ Yt

)
,Fi

t

〉)
+ K i (Xi

T)

)
s.t. Xi

t+1 = f it (Xi
t ,U

i
t ,F

i
t ,Wt+1)

Ui
t � Ft .

20/32

Solving the production subproblems by DP

Assuming that

• the process W is a white noise,

• the process Y follows a dynamics Yt+1 = ht(Yt ,Wt+1),

Then (Xt ,Yt) is a valid state to apply Dynamic Programming:

V i
T (x , y) = K i (x)

V i
t (x , y) = min

u,f
E
(
Li
t(x , u, f ,Wt+1)

+
〈
E
(
λ

i,(k)
t

∣∣ Yt = y
)
, f
〉

+ V i
t+1(Xi

t+1,Yt+1)
)

s.t. Xi
t+1 = f it (x , u, f ,Wt+1) ,

Yt+1 = ht(y ,Wt+1) .

21/32

Where are we heading to?

• Solving directly the problem is not numerically tractable

• SDDP allows to solve the problem, but still has to deal with a noise

Wt with size nNbin ...

• Price decomposition allows to decompose the problem in N

independent subproblems

Now, we aim to compare numerically SDDP and DADP.

22/32

Numerical implementation

Our stack is deeply rooted in Julia language

• Modeling Language: JuMP

• Open-source SDDP Solver:

StochDynamicProgramming.jl

• LP/QP Solver: Gurobi 7.02

https://github.com/JuliaOpt/StochDynamicProgramming.jl

23/32

https://github.com/JuliaOpt/StochDynamicProgramming.jl

Implementation of SDDP and DADP

• Implementing SDDP is straightforward

(but still a noise Wt with size nNbin...)

• DADP is more elaborated. The difficulty lies in the update scheme:

E
(
λ(k+1)

∣∣ Y
)

= E
(
λ(k)

∣∣ Y
)

+ ρ E
(
AQ(k+1) + F(k+1)

∣∣ Y
)
.

We use a crude relaxation: Y = 0. Denoting λ(k) = E
(
λ(k)

)
,

the update becomes

λ(k+1) = λ(k) + ρ︸︷︷︸
Update step

E
(
AQ(k+1) + F(k+1)

)︸ ︷︷ ︸
Monte Carlo

.

24/32

Implementation of SDDP and DADP

• Implementing SDDP is straightforward

(but still a noise Wt with size nNbin...)

• DADP is more elaborated. The difficulty lies in the update scheme:

E
(
λ(k+1)

∣∣ Y
)

= E
(
λ(k)

∣∣ Y
)

+ ρ E
(
AQ(k+1) + F(k+1)

∣∣ Y
)
.

We use a crude relaxation: Y = 0. Denoting λ(k) = E
(
λ(k)

)
,

the update becomes

λ(k+1) = λ(k) + ρ︸︷︷︸
Update step

E
(
AQ(k+1) + F(k+1)

)︸ ︷︷ ︸
Monte Carlo

.

24/32

Implementing gradient ascent

• Gradient ascent is too slow ...

• We try to implement accelerated gradient ascent3 but ...

• Unfortunately, we do not know the Lipschitz constant of the

derivative!

• The line-search kills the performance of gradient ascent...

To overcome this issue, we use Quasi-Newton (BFGS): the update

becomes

λ(k+1) = λ(k) + ρ(k)W (k) Ê
{
AQ(k+1) + F(k+1)

}
.

• We exploit the strong-convexity,

• The line-search is penalized by inexact gradient

(especially near convergence where the algorithm requires precision)

3described in the seminal paper of Nesterov

25/32

Implementing gradient ascent

• Gradient ascent is too slow ...

• We try to implement accelerated gradient ascent3 but ...

• Unfortunately, we do not know the Lipschitz constant of the

derivative!

• The line-search kills the performance of gradient ascent...

To overcome this issue, we use Quasi-Newton (BFGS): the update

becomes

λ(k+1) = λ(k) + ρ(k)W (k) Ê
{
AQ(k+1) + F(k+1)

}
.

• We exploit the strong-convexity,

• The line-search is penalized by inexact gradient

(especially near convergence where the algorithm requires precision)
3described in the seminal paper of Nesterov

25/32

Adding an augmented Lagrangian

Let first introduce the augmented Lagrangian corresponding to the

relaxed problem:

L(F,Q,λ) = JP(F)+JT(Q)+
〈
λ ,E(AQ+F|Y)

〉
+
ρ

2

∥∥E(AQ + F|Y)
∥∥2

.

If a saddle point exists, the problem is equivalent to:

max
λ

min
F,Q

L(F,Q,λ) .

ADMM solves iteratively the subproblems JP and JT, and updates the

multiplier λ with a constant step-size ρ:

F(k+1) = arg min
F

JP(F) +
〈
λ(k) ,F

〉
+
ρ

2

∥∥∥E(AQ(k)
)

+ F
∥∥∥2

Q(k+1) = arg min
Q

JT(Q) +
〈
λ(k) ,AQ

〉
+
ρ

2

∥∥∥AQ + E
(
F(k+1)

)∥∥∥2

λ(k+1) = λ(k) + ρE(AQ(k+1) + F(k+1)) .

26/32

Adding an augmented Lagrangian

Let first introduce the augmented Lagrangian corresponding to the

relaxed problem:

L(F,Q,λ) = JP(F)+JT(Q)+
〈
λ ,E(AQ+F|Y)

〉
+
ρ

2

∥∥E(AQ + F|Y)
∥∥2

.

If a saddle point exists, the problem is equivalent to:

max
λ

min
F,Q

L(F,Q,λ) .

ADMM solves iteratively the subproblems JP and JT, and updates the

multiplier λ with a constant step-size ρ:

F(k+1) = arg min
F

JP(F) +
〈
λ(k) ,F

〉
+
ρ

2

∥∥∥E(AQ(k)
)

+ F
∥∥∥2

Q(k+1) = arg min
Q

JT(Q) +
〈
λ(k) ,AQ

〉
+
ρ

2

∥∥∥AQ + E
(
F(k+1)

)∥∥∥2

λ(k+1) = λ(k) + ρE(AQ(k+1) + F(k+1)) .

26/32

Double, double toil and trouble

Digesting the stochastic caldron, between time and space ...

BFGS ADMM

DP

QP

• Global problem P

min
Q,F

JP[F] + JT[Q]

s.t. AQ + F = 0 .

• Decomposed production
subproblem Pi

min
Fi

JP(Fi) +
〈
λ
i,(k)

, Fi
〉

• DP subproblem V i
t

V i
t (x, y) = min

u,f
E
(
Lit (x, u, f ,Wt+1)

+
〈
E
(
λ
i,(k)
t

∣∣ Yt = y
)
, f

〉
+ V i

t+1(Xi
t+1, Yt+1)

)

27/32

SDDP convergence

0 20 40 60 80 100
Iteration

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1e8
Lower bound
Upper bound
Confidence interval

Figure 1: Convergence of SDDP’s upper and lower bounds (T = 52, nbin = 2).

28/32

Multipliers convergence

0 10 20 30 40
Iteration

0

250

500

750

1000

1250

1500

1750
M

ul
tip

lie
rs

Figure 2: Convergence of multipliers with BFGS (T = 52, nbin = 2).

29/32

ADMM convergence

0 10 20 30 40 50 60
Iteration

1.0

1.5

2.0

2.5

3.0
lo

g(
||g

||)

Figure 3: Convergence of ADMM, plotting the logarithm of the norm of the

primal residual (T = 52, nbin = 2). 30/32

Results — Weekly time steps

Compute Bellman value functions at weekly time steps (T = 52).

nbin 1 2 5

SDDP value 9.396 9.687 +∞
SDDP time 8” 928” +∞

BFGS value 9.411 9.687 9.974

BFGS time 69” 157” 575”

ADMM value 9.404 9.682 9.984

ADMM time 65” 326” 643”

• SDDP does not converge if nbin = 5.

• If nbin = 1, results of SDDP, BFGS and ADMM are almost equivalent.

• BFGS and ADMM compute a gradient with Monte-Carlo ...

• Here, BFGS is penalized by line-search, and stops

earlier if no search direction is found.

31/32

Results — Weekly time steps

Compute Bellman value functions at weekly time steps (T = 52).

nbin 1 2 5

SDDP value 9.396 9.687 +∞
SDDP time 8” 928” +∞

BFGS value 9.411 9.687 9.974

BFGS time 69” 157” 575”

ADMM value 9.404 9.682 9.984

ADMM time 65” 326” 643”

• SDDP does not converge if nbin = 5.

• If nbin = 1, results of SDDP, BFGS and ADMM are almost equivalent.

• BFGS and ADMM compute a gradient with Monte-Carlo ...

• Here, BFGS is penalized by line-search, and stops

earlier if no search direction is found.

31/32

Results — Weekly time steps

Compute Bellman value functions at weekly time steps (T = 52).

nbin 1 2 5

SDDP value 9.396 9.687 +∞
SDDP time 8” 928” +∞

BFGS value 9.411 9.687 9.974

BFGS time 69” 157” 575”

ADMM value 9.404 9.682 9.984

ADMM time 65” 326” 643”

• SDDP does not converge if nbin = 5.

• If nbin = 1, results of SDDP, BFGS and ADMM are almost equivalent.

• BFGS and ADMM compute a gradient with Monte-Carlo ...

• Here, BFGS is penalized by line-search, and stops

earlier if no search direction is found.

31/32

Results — Weekly time steps

Compute Bellman value functions at weekly time steps (T = 52).

nbin 1 2 5

SDDP value 9.396 9.687 +∞
SDDP time 8” 928” +∞

BFGS value 9.411 9.687 9.974

BFGS time 69” 157” 575”

ADMM value 9.404 9.682 9.984

ADMM time 65” 326” 643”

• SDDP does not converge if nbin = 5.

• If nbin = 1, results of SDDP, BFGS and ADMM are almost equivalent.

• BFGS and ADMM compute a gradient with Monte-Carlo ...

• Here, BFGS is penalized by line-search, and stops

earlier if no search direction is found.

31/32

Conclusion

Conclusion

Conclusion

• A survey of different algorithms, mixing spatial

and time decomposition.

• DADP works well with the crude relaxation Y = 0.

• SDDP does not converge in a finite time if nbin = 5.

• We had a lot of troubles to deal with approximate gradients!

Perspectives

• Find a proper information process Y.

• Improve the integration between SDDP and DADP.

• Test other decomposition schemes (by quantity, by prediction).

32/32

P. Girardeau.

Résolution de grands problèmes en optimisation stochastique dynamique.

Thèse de doctorat, Université Paris-Est, 2010.

V. Leclère.

Contributions aux méthodes de décomposition en optimisation stochastique.

Thèse de doctorat, Université Paris-Est, 2014.

A. Lenoir and P. Mahey.

A survey of monotone operator splitting methods and decomposition of convex programs.

RAIRO Operations Research 51, 17-41, 2017.

Philippe Mahey, Jonas Koko, Arnaud Lenoir and Luc Marchand.

Coupling decomposition with dynamic programming for a stochastic spatial model for

long-term energy pricing problem.

Dams trajectory

0 10 20 30 40 50
Time step

0

2000

4000

6000

8000

10000
St

oc
k

FR
A

SGD convergence

Plotting the convergence with T = 52 and nbin = 2.

0 25 50 75 100 125 150 175 200
Iteration

0.6

0.7

0.8

0.9

1.0

1.1

1.2 1e8
fobj
MA
Primal cost

	Modeling
	Resolution methods
	Stochastic Programming
	Time decomposition
	Spatial decomposition

	Numerical implementation
	Conclusion
	Appendix

