Optimization of an urban district microgrid

F. Pacaud

Advisors: P. Carpentier, J.-P. Chancelier, M. De Lara

November 9, 2016

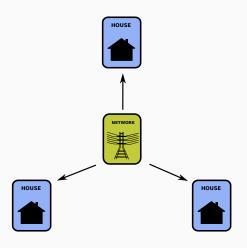
A partnership between mathematicians and thermicians

 Efficacity is a research institute for energy transition an original mix of companies and academic researchers

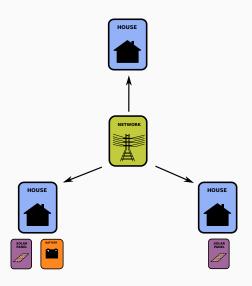
 This presentation sums up a common work between CERMICS and Efficacity

 This cooperation develops optimization algorithms for real problems concerning the energy transition

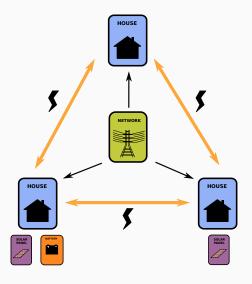
Usually houses import electricity from the grid



But more and more houses are equipped with solar panel



Is it worth to add a local grid to exchange electricity?



Is it worth to connect different houses together inside a district?

Challenges:

Handle electrical exchanges between houses

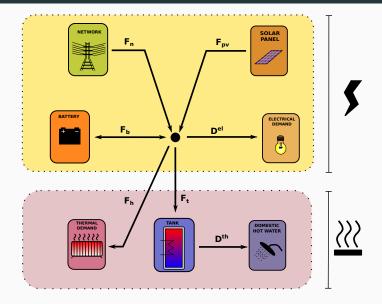
We turn to mathematical optimization to answer the question

Two commandments to rule them all

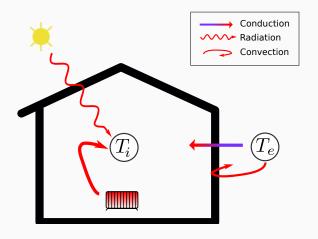
Thou shall:

- Satisfy thermal comfort
- Improve energy efficiency

For each house, we consider the electrical system...



... and the thermal enveloppe



Where do we come from?

We already solve the house's problem with 4 state variables to:

- Minimize electrical consumption
- Maintain a comfortable temperature inside the house

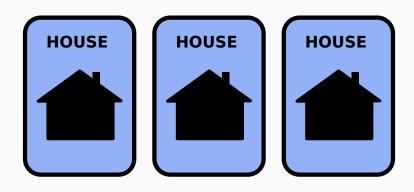
To achieve these goals, we:

- Stored electricity in battery
- Stored heat in hot water tank

We controlled the stocks every 15mn over one day.

We formulated a multistage stochastic programming problem

And now: we add two other houses



Outline

A brief recall of the single house problem

Physical modelling

Optimization problem

Optimization problem for a district

District topology

Assessment of strategies

Resolution Methods

Numerical resolution

Resolution and comparison

Optimal trajectories of storages

Conclusion

Outline

A brief recall of the single house problem

Physical modelling

Optimization problem

Optimization problem for a district

District topology

Assessment of strategies

Resolution Methods

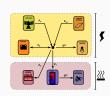
Numerical resolution

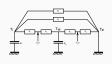
Resolution and comparison

Optimal trajectories of storages

Conclusion

We introduce states, controls and noises





- Stock variables $X_t = (B_t, H_t, \theta_t^i, \theta_t^w)$
 - B_t, battery level (kWh)
 - H_t , hot water storage (kWh)
 - θ_t^i , inner temperature (° C)
 - θ_t^w , wall's temperature (° C)
- Control variables $U_t = (F_{B,t}^+, F_{B,t}^-, F_{T,t}, F_{H,t})$
 - $F_{B,t}^+$, energy stored in the battery
 - $F_{B,t}^-$, energy taken from the battery
 - $F_{T,t}$, energy used to heat the hot water tank
 - $F_{H,t}$, thermal heating
- Perturbations $W_t = \left(D_t^E, D_t^{DHW}, P_t^{ext}, \theta_t^e\right)$
 - D_t^E, electrical demand (kW)
 - D_t^{DHW} , domestic hot water demand (kW)
 - P_t^{ext}, external radiations (kW)
 - θ_t^e , external temperature (° C)

Discrete time state equations

So we have the four state equations (all linear):

$$B_{t+1} = \alpha_B B_t + \Delta T \left(\rho_c F_{B,t}^+ - \frac{1}{\rho_d} F_{B,t}^- \right)$$

$$H_{t+1} = \alpha_H H_t + \Delta T \left[F_{T,t} - D_t^{DHW} \right]$$

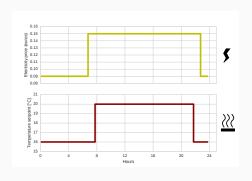
$$\theta_{t+1}^{w} = \theta_{t}^{w} + \frac{\Delta T}{c_{m}} \left[\frac{\theta_{t}^{i} - \theta_{t}^{w}}{R_{i} + R_{s}} + \frac{\theta_{t}^{e} - \theta_{t}^{w}}{R_{m} + R_{e}} + \gamma F_{H,t} + \frac{R_{i}}{R_{i} + R_{s}} P_{t}^{int} + \frac{R_{e}}{R_{e} + R_{m}} P_{t}^{ext} \right]$$

$$\theta_{t+1}^i = \theta_t^i + \frac{\Delta T}{c_i} \left[\frac{\theta_t^w - \theta_t^i}{R_i + R_s} + \frac{\theta_t^e - \theta_t^i}{R_v} + \frac{\theta_t^e - \theta_t^i}{R_f} + (1 - \gamma) F_{H,t} + \frac{R_s}{R_i + R_s} P_t^{int} \right]$$

which will be denoted:

$$X_{t+1} = f_t(X_t, U_t, W_{t+1})$$

Prices and temperature setpoints vary along time



- $T_f = 24h, \Delta T = 15mn$
- Electricity peak and off-peak hours
- $\pi_{elec} = 0.09$ or 0.15 euros/kWh
- Temperature set-point 16° C or 20° C

The costs we have to pay

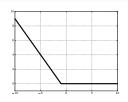
· Cost to import electricity from the network

$$-\underbrace{b_E \max\{0, -F_{NE,t+1}\}}_{\text{selling}} + \underbrace{h_E \max\{0, F_{NE,t+1}\}}_{\text{buying}}$$

where we define the recourse variable (electricity balance):

$$\frac{\textbf{\textit{F}}_{\textit{NE},t+1}}{\textit{\textit{Network}}} = \underbrace{D_{t+1}^{\textit{E}}}_{\textit{Demand}} - \underbrace{F_{\textit{B},t}^{+} + F_{\textit{B},t}^{-}}_{\textit{Battery}} + \underbrace{F_{\textit{H},t}}_{\textit{Heating}} + \underbrace{F_{\textit{T},t}}_{\textit{Tank}} + \underbrace{F_{\textit{pv},t}}_{\textit{Solar panel}}$$

• Virtual Cost of thermal discomfort: κ_{th} ($\theta_t^i - \bar{\theta}_t^i$) deviation from setpoint



Piecewise linear cost
Penalize temperature if
below given setpoint

Instantaneous and final costs for a single house

• The instantaneous convex costs are

$$\begin{aligned} \mathcal{C}_t(X_t, U_t, W_{t+1}) &= \underbrace{-b_E \max\{0, -F_{NE, t+1}\}}_{buying} + \underbrace{h_E \max\{0, F_{NE, t+1}\}}_{selling} \\ &+ \underbrace{\kappa_{th}(\theta_t^i - \bar{\theta}_t^i)}_{discomfort} \end{aligned}$$

We add a final linear cost

$$-\pi_H H_{T_f} - \pi_B B_{T_f}$$

to avoid empty stocks at the final horizon T_f

That gives the following stochastic optimization problem

$$\begin{split} \min_{X,U} & J(X,U) = \mathbb{E}\left[\sum_{t=0}^{T_f-1} \underbrace{\mathcal{C}(X_t,U_t,W_{t+1})}_{instantaneous\ cost} + \underbrace{\mathcal{K}(X_{T_f})}_{final\ cost}\right] \\ s.t & X_{t+1} = f_t(X_t,U_t,W_{t+1}) \quad \text{Dynamic} \\ & X^{\flat} \leq X_t \leq X^{\sharp} \\ & U^{\flat} \leq U_t \leq U^{\sharp} \\ & X_0 = X_{ini} \\ & U_t \leq \sigma(W_1,\ldots,W_t) \quad \text{Non-anticipativity} \end{split}$$

Outline

A brief recall of the single house problem

Physical modelling

Optimization problem

Optimization problem for a district

District topology

Assessment of strategies

Resolution Methods

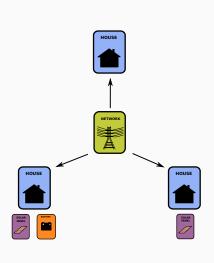
Numerical resolution

Resolution and comparison

Optimal trajectories of storages

Conclusion

We have three different houses



Our (small) district:

- House 1: solar panel + battery
- House 2: solar panel
- House 3: nothing

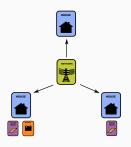
For the three houses:

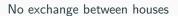
- 10 stocks (= 4 + 3 + 3)
- 8 controls (= 4 + 2 + 2)
- 8 perturbations (2 perturbations in common)

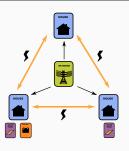
The total demand to the network is bounded:

$$\sum_{k=1}^{3} F_{NE,t+1}^{k} \leq F_{NE}^{\sharp}$$

We want to compare two configurations



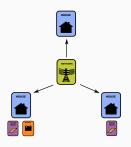




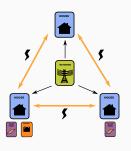
Exchange in a local grid

How much energy can we save while allowing houses to exchange energy through a local grid?

We want to compare two configurations



No exchange between houses

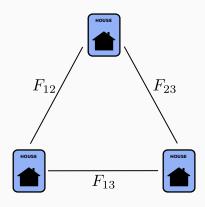


Exchange in a local grid

How much energy can we save while allowing houses to exchange energy through a local grid?

We show that local grid + optimization decreases costs by 23 % during summer!

The grid adds three controls to the problem



How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

- 96 timesteps
- 10 stocks
- 8 controls
- 8 perturbations (+3 flows between houses)

How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

- 96 timesteps
- 10 stocks
- 8 controls
- 8 perturbations (+3 flows between houses)

The state dimension is high (=10), the problem is not tractable by a straightforward use of *dynamic programming* because of the curse of dimensionality! :-(

How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

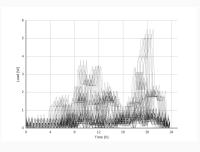
- 96 timesteps
- 10 stocks
- 8 controls
- 8 perturbations (+3 flows between houses)

The state dimension is high (=10), the problem is not tractable by a straightforward use of *dynamic programming* because of the curse of dimensionality! :-(

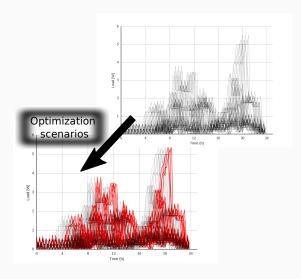
We will compare two methods that overcome this curse:

- 1. Model Predictive Control (MPC)
- 2. Stochastic Dual Dynamic Programming (SDDP)

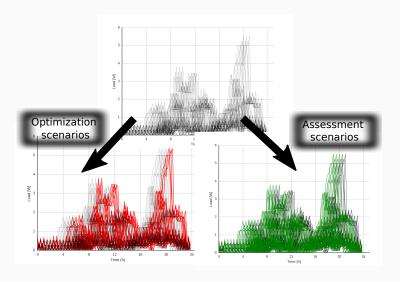
How to assess management strategies?



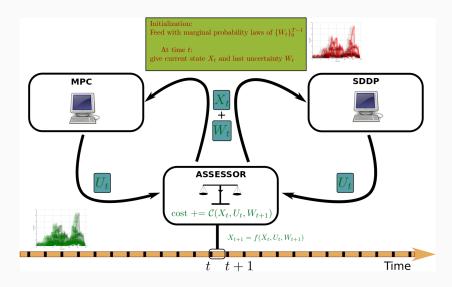
How to assess management strategies?



How to assess management strategies?

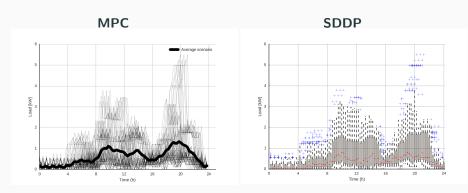


We compare SDDP and MPC with assessment scenarios



MPC vs SDDP: information structure

The two algorithms use optimization scenarios to model the perturbations:



MPC vs SDDP: online resolution

At the beginning of time period [au, au+1], do

MPC

- Consider a **rolling horizon** $[\tau, \tau + H[$
- Consider a **deterministic scenario** of demands (forecast) $(\overline{W}_{\tau+1}, \dots, \overline{W}_{\tau+H})$
- Solve the deterministic optimization problem

$$\min_{X,U} \left[\sum_{t=\tau}^{\tau+H} C(X_t, U_t, \overline{W}_{t+1}) + K(X_{\tau+H}) \right]$$
 s.t.
$$X = (X_{\tau}, \dots, X_{\tau+H})$$

$$U = (U_{\tau}, \dots, U_{\tau+H-1})$$

$$X_{t+1} = f(X_t, U_t, \overline{W}_{t+1})$$

$$X^b \leq X_t^k \leq X^{\sharp}$$

$$U^b \leq U_t \leq U^{\sharp}$$

- Get optimal solution $(U_{\tau}, \dots, U_{\tau+H})$ over horizon H = 24h
- Use only control U_{τ} , and iterate at time $\tau+1$

SDDP

• We consider the approximated value functions $(\widetilde{V}_t)_0^{T_f}$

$$\widetilde{V}_t$$
 $\leq V_t$

Piecewise affine functions

• At time τ , we solve

$$U_{ au}^{\#} = \underset{u_{ au}}{\operatorname{arg\,min}} \; \mathbb{E}_{W_{ au}} \Big[\mathcal{C}_{ au}(X_{ au}, u_{ au}, w_{ au}) \\ + \widetilde{V}_{ au+1} \Big(f_{ au}(X_{ au}, u_{ au}, w_{ au}) \Big) \Big]$$

⇒ this problem resumes to solve a LP at each timestep

• Send $U_{\tau}^{\#}$ to assessor

A brief recall on Dynamic Programming

Dynamic Programming

 μ_t is the probability law of W_t and is being used to estimate expectation and compute **offline** value functions with the backward equation:

$$V_{t}(x_{t}) = \min_{U_{t}} \mathbb{E}_{\mu_{t}} \left[\underbrace{\mathcal{C}_{t}(x_{t}, U_{t}, W_{t+1})}_{\text{current cost}} + \underbrace{V_{t+1} \left(f(x_{t}, U_{t}, W_{t+1}) \right)}_{\text{future costs}} \right]$$

$$V_{T}(x) = K(x)$$

A brief recall on Dynamic Programming

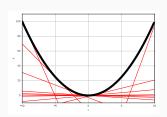
Dynamic Programming

 μ_t is the probability law of W_t and is being used to estimate expectation and compute **offline** value functions with the backward equation:

$$V_t(x_t) = \min_{U_t} \mathbb{E}_{\mu_t} \left[\underbrace{\mathcal{C}_t(x_t, U_t, W_{t+1})}_{\text{current cost}} + \underbrace{V_{t+1} \Big(f(x_t, U_t, W_{t+1}) \Big)}_{\text{future costs}} \right]$$

$$V_T(x) = K(x)$$

Stochastic Dual Dynamic Programming



- Convex value functions V_t are approximated as a supremum of a finite set of affine functions
- Affine functions (=cuts) are computed during forward/backward passes, till convergence
- SDDP makes an extensive use of LP solver

$$\widetilde{V}_t(x) = \max_{1 \le k \le K} \{\lambda_t^k x + \beta_t^k\} \le V_t(x)$$

Outline

A brief recall of the single house problem

Physical modelling

Optimization problem

Optimization problem for a district

District topology

Assessment of strategies

Resolution Methods

Numerical resolution

Resolution and comparison

Optimal trajectories of storages

Conclusion

Our stack is deeply rooted in Julia language

Modeling Language: JuMP

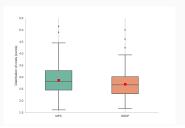
 Open-source SDDP Solver: StochDynamicProgramming.jl

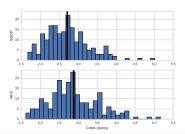
• LP Solver: CPLEX 12.5

https://github.com/JuliaOpt/StochDynamicProgramming.jl

Comparison of MPC and SDDP

We compare MPC and SDDP during one day in summer over 200 assessment scenarios:





	euros/day	
MPC	2.882	
SDDP	2.713	

SDDP is in average 6.9~% better than MPC!

Operational costs obtained in simulation

We compare different configurations, during summer and winter:

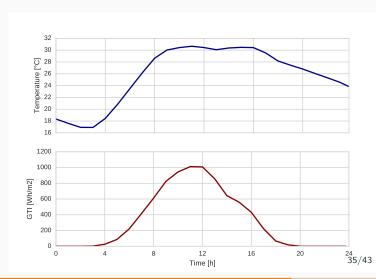
Summer			
Local Grid	Elec. bill	Self cons.	
	euros/day	%	
No	3.53	48.1 %	
Yes	2.71	55.2 %	

Winter		
Elec. bill	Self cons.	
euros/day	%	
54.2	1.7 %	
id.	id.	
	Elec. bill euros/day	

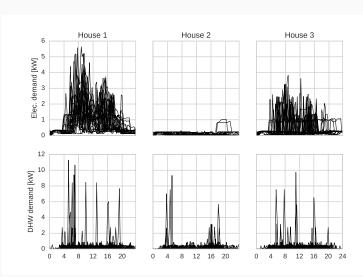
INPUT

We work with real data

We consider one day during summer 2015 (data from Meteo France):

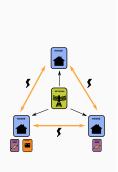


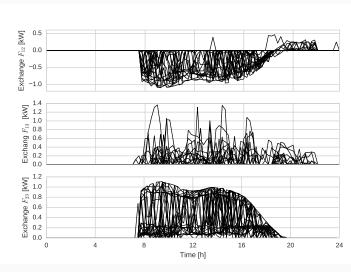
We have 200 scenarios of demands during this day



OUTPUT

As we gain solar energy, surplus is traded in local grid

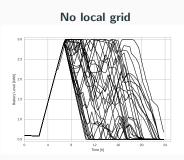


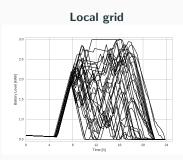


The battery is used as a global storage inside the local grid...

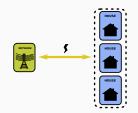
We observe that:

- the battery is more widely used
- the saturation level is reached more often (it could pay to have a bigger battery)

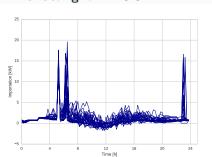




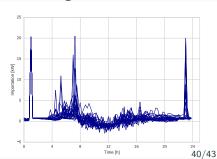
... and we minimize our average importation from the network



No local grid = 25.8 kWh



Local grid = 19.4 kWh



Outline

A brief recall of the single house problem

Physical modelling

Optimization problem

Optimization problem for a district

District topology

Assessment of strategies

Resolution Methods

Numerical resolution

Resolution and comparison

Optimal trajectories of storages

Conclusion

Conclusion

- We extend the results obtained with a single house to a small district
- This study can help to perform an economic analysis
- It pays to use stochastic optimization: SDDP is better than MPC
- We obtain promising results with SDDP, now we want to scale!

Perspectives

Mix SDDP with spatial decomposition like *Dual Approximate Dynamic Programming* (DADP) to control bigger urban neighbourhood

