
Optimization of Energy

Production and Transport

A stochastic decomposition approach

P. Carpentier, J.-P. Chancelier, A. Lenoir, F. Pacaud

GdR MOA — October 18, 2017

ENSTA ParisTech — ENPC ParisTech — EDF Lab — Efficacity

1/31

Motivation

An energy production and transport optimization problem on a grid

modeling energy exchange across European countries.1

FRA

SPAPT

UK
BEL

GER

SWI

ITA

• Stochastic dynamical problem.

• Discrete time formulation (weekly or monthly time steps).

• Large-scale problem (8 countries).

1But the framework remains valid for smaller energy management problems.

3/31

Lecture outline

Modelling

Resolution methods

Stochastic Programming

Time decomposition

Spatial decomposition

Numerical implementation

Conclusion

4/31

Modelling

Production at each node of the grid

At each node i of the grid, we formulate a production problem on a

discrete time horizon J0,T K, involving the following variables at each

time t:

Wi
t

Xi
t

Ui
t

Qa
t

Qb
t

Fi
t

• Xi
t : state variable

(dam volume)

• Ui
t : control variable

(energy production)

• Fi
t : grid flow

(import/export from the grid)

• Wi
t : noise

(consumption, renewable)

5/31

Writing the problem for each node

For each node i ∈ J1,NK:

• The dynamic x it+1 = f it (x it , u
i
t ,w

i
t) writes

x it+1 = x it + ait︸︷︷︸
inflow

− pit︸︷︷︸
turbinate

− s it︸︷︷︸
spillage

.

• The load balance (supply = demand) gives

pit︸︷︷︸
turbinate

+ g i
t︸︷︷︸

thermal

+ r it︸︷︷︸
recourse

+ f it︸︷︷︸
grid flow

= d i
t︸︷︷︸

demand

.

Thus, we explicit w i
t and uit :

w i
t = (ait , d

i
t) , uit = (pit , s

i
t , g

i
t , r

i
t) .

We pay to use the thermal power plant and we penalize the recourse:

Lit(x
i
t , u

i
t , f

i
t ,w

i
t) = αi

t(g
i
t)2 + βi

tg
i
t︸ ︷︷ ︸

quadratic cost

+ κitr
i
t︸︷︷︸

recourse penalty

.

6/31

A stochastic optimization problem decoupled in space

At each node i of the grid, we have to solve a stochastic optimal control

subproblem depending on the grid flow process Fi :2

J iP[Fi] = min
Xi ,Ui

E
(T−1∑

t=0

Lit(Xi
t ,U

i
t ,F

i
t ,W

i
t+1) + K i (Xi

T)
)
,

s.t. Xi
t+1 = f it (Xi

t ,U
i
t ,F

i
t ,W

i
t+1) ,

Xi
t ∈ X

i,ad

t , Ui
t ∈ U

i,ad

t ,

Ui
t � Ft ,

The last equation is the measurability constraint, where Ft is

the σ-field generated by the noises {Wi
τ}τ=1...t up to time t.

2The notation J iP[·] means that the argument of J iP is a random variable.

7/31

Modeling exchanges between countries

The grid is represented by a directed graph G = (N ,A). At each time

t ∈ J0,T − 1K we have:

Fi
t

Qa
t

• a flow Qa
t through each arc a,

inducing a cost cat (Qa
t),

modeling the exchange between

two countries

• a grid flow Fi
t at each node i ,

resulting from the balance

equation

Fi
t =

∑
a∈input(i)

Qa
t −

∑
b∈output(i)

Qb
t

8/31

A transport cost decoupled in time

At each time step t ∈ J0,T − 1K , we define the transport cost as the

sum of the cost of the flows Qa
t through the arcs a of the grid:

JT,t [Qt] = E
(∑

a∈A
cat (Qa

t)
)
,

where the cat ’s are easy to compute functions (say quadratic).

Kirchhoff’s law

The balance equation stating the conservation between Qt and Ft

rewrites in the following matrix form:

AQt + Ft = 0 ,

where A is the node-arc incidence matrix of the grid.

9/31

The overall production transport problem

The production cost JP aggregates the costs at all nodes i :

JP[F] =
∑
i∈N

J iP[Fi] ,

and the transport cost JT aggregates the costs at all time t:

JT[Q] =
T−1∑
t=0

JT,t [Qt] .

The compact production-transport problem formulation writes:

min
Q,F

JP[F] + JT[Q] (P)

s.t. AQ + F = 0 .

10/31

Resolution methods

Where are we heading to?

The problem P has:

• N nodes (with N = 8);

• T time steps (with T = 12 or T = 52);

• N independent random variables per time step t: W1
t , · · · ,WN

t .

We aim to solve the problem numerically. We suppose that for all t, Wi
t

is a discrete random variable, with support size nbin. Thus, the random

variable

Wt = (W1
t , · · · ,W

N
t) ,

has a support size nNbin (because of the independence).

11/31

First idea: solving the whole problem inplace!

Write the problem and solve it!

P

But ...

• N nodes and T time steps.

• Non-anticipativity constraint: we ought to formulate

the problem on a tree (Stochastic Programming approach)

number of nodes = (nNbin)T = nNTbin ,

giving a complexity in O(nNTbin).

The problem is not tractable ...
12/31

Second idea: decomposition with Dynamic Programming

We assumed that the noise W0, · · · ,WT were independent.

We decompose the problem time step by time step → T subproblems

P : V1 V2 V3 VT

The complexity reduces to O(TnNbin). We use Dynamic Programming to

compute the value functions V1, · · · ,VT .

But ...

• N nodes: curse of dimensionality

• Still a support size nNbin for Wt

We use Stochastic Dual Dynamic Programming to solve the problem

with N = 8 dimensions.

13/31

A brief recall on Stochastic Dynamic Programming

Dynamic Programming

We compute value functions with the backward equation:

VT (x) = K(x)

Vt(xt) = min
ut

E
[
Lt(xt , ut ,Wt+1)︸ ︷︷ ︸

current cost

+Vt+1

(
f (xt , ut ,Wt+1)

)
︸ ︷︷ ︸

future costs

]

Stochastic Dual Dynamic Programming

10 5 0 5 10
x

0

20

40

60

80

100

y

• Convex value functions Vt are approximated as

a supremum of a finite set of affine functions

• Affine functions (=cuts) are computed during

forward/backward passes, till convergence

Ṽt(x) = max
1≤k≤K

{
λkt x + βk

t

}
≤ Vt(x)

• SDDP makes an extensive use of LP/QP

solver 14/31

Third idea: spatial decomposition

We decompose the problem time by time and node by node to obtain

N × T decomposed subproblems:

P1 :

P2 :

...

PN :

V 1
1 V 1

2 V 1
3 V 1

T

V 2
1 V 2

2 V 2
3 V 2

T

V N
1 V N

2 V N
3 V N

T

λ1
1

λ2N
1

λ1N
1

λ12
2

λ2N
2

λ12
3

λ2N
3

The complexity reduces to O(NTnbin)! But ...

How to compute the different λ? 15/31

Introducing decomposition methods

The decomposition/coordination methods we want to deal with are

iterative algorithms involving the following ingredients.

• Decompose the global problem in several subproblems

of smaller size by dualizing the constraint AQ + F = 0,

• Coordinate at each iteration the subproblems using

the price λ.

AQ + F︸︷︷︸
allocation

= 0 ; λ︸︷︷︸
price

• Solve the subproblems using Dynamic Programming,

taking into account the price transmitted by the coordination.

16/31

Approximating the subproblems

In both cases, the subproblems encompass a new “noise”, that is,

the price multiplier λ
(k)
t , which may be correlated in time.

The white noise assumption fails.

Dynamic Programming cannot be used for solving the subproblems.

In order to overcome this difficulty, we use a trick that involves

approximating the new noise λk
t by its conditional expectation w.r.t. a

chosen random variable Yt .

Assume that the process Y has a given dynamics:

Yt+1 = ht(Yt ,Wt+1) .

If noises Wt ’s are time independent, then (Xi
t ,Yt) is a valid state for the

i-th subproblem and Dynamic Programming applies.

17/31

Approximating the subproblems

In both cases, the subproblems encompass a new “noise”, that is,

the price multiplier λ
(k)
t , which may be correlated in time.

The white noise assumption fails.

Dynamic Programming cannot be used for solving the subproblems.

In order to overcome this difficulty, we use a trick that involves

approximating the new noise λk
t by its conditional expectation w.r.t. a

chosen random variable Yt .

Assume that the process Y has a given dynamics:

Yt+1 = ht(Yt ,Wt+1) .

If noises Wt ’s are time independent, then (Xi
t ,Yt) is a valid state for the

i-th subproblem and Dynamic Programming applies.

17/31

Approximating the subproblems

In both cases, the subproblems encompass a new “noise”, that is,

the price multiplier λ
(k)
t , which may be correlated in time.

The white noise assumption fails.

Dynamic Programming cannot be used for solving the subproblems.

In order to overcome this difficulty, we use a trick that involves

approximating the new noise λk
t by its conditional expectation w.r.t. a

chosen random variable Yt .

Assume that the process Y has a given dynamics:

Yt+1 = ht(Yt ,Wt+1) .

If noises Wt ’s are time independent, then (Xi
t ,Yt) is a valid state for the

i-th subproblem and Dynamic Programming applies.

17/31

Price decomposition

The production and transport optimization problem writes

min
Q,F

JP[F] + JT[Q] s.t. AQ + F = 0 .
(
P
)

The decomposition scheme consists in dualizing the constraint, and then

in approximating the multiplier λ by its conditional expectation w.r.t. Y.

This trick leads to the following problem

max
λ

min
Q,F

JP[F] + JT[Q] +
〈
E(λ | Y) ,AQ + F

〉
.

It is not difficult to prove that this dual problem is associated

to the following relaxed primal problem:

min
Q,F

JP[F] + JT[Q] s.t. E
(
AQ + F

∣∣ Y
)

= 0 ,

and hence provides a lower bound of
(
P
)
.

18/31

A dual gradient-like algorithm

Applying the Uzawa algorithm to the dual problem

max
λ

min
Q,F

JP[F] + JT[Q] +
〈
E(λ | Y) ,AQ + F

〉
,

leads to a decomposition between production and transport:

F(k+1) ∈ arg min
F

JP[F] +
〈
E
(
λ(k)

∣∣ Y
)
,F
〉
, Production

Q(k+1) ∈ arg min
Q

JT[Q] +
〈
E
(
λ(k)

∣∣ Y
)
,AQ

〉
, Transport

E
(
λ(k+1)

∣∣ Y
)

= E
(
λ(k)

∣∣ Y
)

+ ρ E
(
AQ(k+1) + F(k+1)

∣∣ Y
)
. Update

19/31

Decomposing the transport problem

The transport subproblem

min
Q

JT[Q] +
〈
E
(
λ(k)

∣∣ Y
)
,AQ

〉
,

writes in a detailled manner

min
Q

T−1∑
t=0

E
(∑

a∈A
cat (Qa

t) +
〈
A>E

(
λ

(k)
t

∣∣ Yt

)
,Qt

〉)
.

This minimization subproblem is evidently decomposable in time

(t by t) and in space (arc by arc), leading to a collection of easy

to solve subproblems.

20/31

Decomposing the production problem

The production subproblem

min
F

JP[F] +
〈
E
(
λ(k)

∣∣ Y
)
,F
〉
,

evidently decomposes node by node

min
Fi

J iP[Fi] +
〈
E
(
λi,(k)

∣∣ Y
)
,Fi
〉
,

hence a stochastic optimal control subproblem for each node i :

min
Xi ,Ui ,Fi

E
(T−1∑

t=0

(
Li
t(Xi

t ,U
i
t ,F

i
t ,Wt+1) +

〈
E
(
λ

i,(k)
t

∣∣ Yt

)
,Fi

t

〉)
+ K i (Xi

T)

)
s.t. Xi

t+1 = f it (Xi
t ,U

i
t ,F

i
t ,Wt+1)

Ui
t � Ft .

21/31

Solving the production subproblems by DP

Assuming that

• the process W is a white noise,

• the process Y follows a dynamics Yt+1 = ht(Yt ,Wt+1),

Dynamic Programming applies for production subproblems:

V i
T (x , y) = K i (x)

Vt(x , y) = min
u,f

E
(
Lit(x , u, f ,Wt+1)

+
〈
E
(
λ
i,(k)
t

∣∣ Yt = y
)
, f
〉

+ V i
t+1(Xi

t+1,Yt+1)
)

s.t. Xi
t+1 = f it (x , u, f ,Wt+1) ,

Yt+1 = ht(y ,Wt+1) .

22/31

Numerical implementation

Our stack is deeply rooted in Julia language

• Modeling Language: JuMP

• Open-source SDDP Solver:

StochDynamicProgramming.jl

• LP/QP Solver: Gurobi 7.02

https://github.com/JuliaOpt/StochDynamicProgramming.jl

23/31

https://github.com/JuliaOpt/StochDynamicProgramming.jl

Implementation of SDDP and DADP

• Implementing SDDP is straightforward

• DADP implementation is more elaborated:

E
(
λ(k+1)

∣∣ Y
)

= E
(
λ(k)

∣∣ Y
)

+ ρ E
(
AQ(k+1) + F(k+1)

∣∣ Y
)
.

We use a crude relaxation:

• We choose Y = 0. We denote λ(k) = E
(
λ(k)

)
. The update becomes

λ(k+1) = λ(k) + ρ︸︷︷︸
Update step

E
(
AQ(k+1) + F(k+1))︸ ︷︷ ︸

Monte Carlo

.

• Unfortunately, we do not know the Lipschitz constant of the

derivative!

• And the problem is not even strongly convex ...

24/31

We compare three algorithms for gradient ascent

• Quasi-Newton (BFGS): To ensure strong convexity, we add a quadratic term to the cost:

L̂i
t(.) = Li

t(.) + u>Qu, with Q � 0. The update is:

λ
(k+1) = λ

(k) + ρ
(k) Ê

{
AQ(k+1) + F(k+1)}

.

• Alternating Direction Method of Multipliers (ADMM): we add an augmented Lagrangian to

solve the problem. The update becomes

λ
(k+1) = λ

(k) +
τ

2
Ê
(
AQ(k+1) + F(k+1))

.

• Stochastic Gradient Descent (SGD):

λ
(k+1) = λ

(k) +
1

1 + k

(
AQ(k+1) + F(k+1))(ω) .

BFGS ADMM SGD

ρ line search ρ(k) → τ 1/(1 + k)

MC size 100-1000 100-1000 1

software L-BFGS-B3 self self

3The famous implementation of [Zhu et al, 1997]
25/31

Double, double toil and trouble

Digesting the stochastic caldron, between time and space ...

BFGS ADMM SGD

DP

QP

• Global problem P

min
Q,F

JP[F] + JT[Q]

s.t. AQ + F = 0 .

• Decomposed subproblem Pi

JP(Fi) = min
Xi ,Ui ,Fi

E
(T−1∑

t=0

(
Lit (Xi

t , Ui
t , Fit , Wt+1)+

〈
E
(
λ
i,(k)
t

∣∣ Yt
)
, Fit

〉)
+ Ki (Xi

T)

)
s.t. Xi

t+1 = f it (Xi
t , Ui

t , Fit , Wt+1)

• DP subproblem V i
t

V i
t (x, y) = min

u,f
E
(
Lit (x, u, f , Wt+1)

+
〈
E
(
λ
i,(k)
t

∣∣ Yt = y
)
, f
〉

+ V i
t+1(Xi

t+1, Yt+1)
)

26/31

Results — Monthly

Compute Bellman value functions at monthly time steps (T = 12).

nbin 1 2 5

SDDP value 5.048 5.203 +∞
SDDP time 0.5” 87” +∞

BFGS value 5.088 5.202 5.286

BFGS time 18” 49” 161”

ADMM value 5.087 5.201 5.288

ADMM time 14” 49” 66”

SGD value 5.088 5.202 5.292

SGD time 37” 66” 130”

• SDDP does not converge if nbin = 5.

• If nbin = 1, SDDP is better than DADP because of the discretization

scheme used in Dynamic Programming.

• BFGS and ADMM compute a gradient with Monte-Carlo ...

• BFGS does not solve the original problem (strong convexification)

27/31

Results — Weekly

Compute Bellman value functions at weekly time steps (T = 52).

nbin 1 2 5

SDDP value 9.396 9.687 +∞
SDDP time 8” 928” +∞

BFGS value 9.411 9.687 9.974

BFGS time 69” 157” 575”

ADMM value 9.404 9.682 9.984

ADMM time 65” 326” 643”

SGD value 9.411 9.679 9.971

SGD time 194” 281” 712”

• The longer the horizon, the slower SDDP is.

• Here, BFGS is penalized by line-search, as it uses

an approximated gradient

• SGD works quite well compared to BFGS and ADMM: these two

algorithms are penalized by the Monte-Carlo computation of the gradient.

28/31

Multipliers convergence

0 10 20 30 40
Iteration

0

250

500

750

1000

1250

1500

1750
M

ul
tip

lie
rs

Figure 1: Convergence of multipliers with BFGS (T = 12, nbin = 1).

29/31

SDDP convergence

0 20 40 60 80 100
Iteration

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1e8
Lower bound
Upper bound
Confidence interval

Figure 2: Convergence of SDDP’s upper and lower bounds (T = 52, nbin = 2).

30/31

Conclusion

Conclusion

Conclusion

• A survey of different algorithms, mixing spatial

and time decomposition.

• DADP works well with the crude relaxation Y = 0,

and even beats SDDP if nbin ≥ 2.

• We had a lot of troubles to deal with approximate gradients!

Perspectives

• Find a proper information process Y.

• Improve the integration between SDDP and DADP.

• Test other decomposition schemes (by quantity, by prediction).

31/31

P. Carpentier et G. Cohen.

Décomposition-coordination en optimisation déterministe et stochastique.

En préparation, Springer, 2016.

P. Girardeau.

Résolution de grands problèmes en optimisation stochastique dynamique.

Thèse de doctorat, Université Paris-Est, 2010.

V. Leclère.

Contributions aux méthodes de décomposition en optimisation stochastique.

Thèse de doctorat, Université Paris-Est, 2014.

A. Lenoir and P. Mahey.

A survey of monotone operator splitting methods and decomposition of convex programs.

RAIRO Operations Research 51, 17-41, 2017.

Philippe Mahey, Jonas Koko, Arnaud Lenoir and Luc Marchand.

Coupling decomposition with dynamic programming for a stochastic spatial model for

long-term energy pricing problem.

31/31

Zhu, Ciyou and Byrd, Richard H and Lu, Peihuang and Nocedal,

Jorge.

L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization .

ACM Transactions on Mathematical Software (TOMS), 23-4, 1997.

Dams trajectory

0 10 20 30 40 50
Time step

0

2000

4000

6000

8000

10000
St

oc
k

FR
A

SGD convergence

Plotting the convergence with T = 52 and nbin = 2.

0 25 50 75 100 125 150 175 200
Iteration

0.6

0.7

0.8

0.9

1.0

1.1

1.2 1e8
fobj
MA
Primal cost

ADMM convergence

Plotting the logarithm of the norm of the primal residual with T = 52

and nbin = 5.

0 10 20 30 40 50 60
Iteration

1.0

1.5

2.0

2.5

3.0

lo
g(

||g
||)

	Modelling
	Resolution methods
	Stochastic Programming
	Time decomposition
	Spatial decomposition

	Numerical implementation
	Conclusion
	Appendix

