Optimization of Energy Production and Transport

A stochastic decomposition approach
P. Carpentier, J.-P. Chancelier, A. Lenoir, F. Pacaud

GdR MOA — October 18, 2017
ENSTA ParisTech - ENPC ParisTech - EDF Lab - Efficacity

Motivation

An energy production and transport optimization problem on a grid modeling energy exchange across European countries. ${ }^{1}$

- Stochastic dynamical problem.
- Discrete time formulation (weekly or monthly time steps).
- Large-scale problem (8 countries).

[^0]
Lecture outline

Modelling

Resolution methods
Stochastic Programming
Time decomposition
Spatial decomposition

Numerical implementation

Conclusion

Modelling

Production at each node of the grid

At each node i of the grid, we formulate a production problem on a discrete time horizon $\llbracket 0, T \rrbracket$, involving the following variables at each time t :

- \mathbf{X}_{t}^{i} : state variable (dam volume)
- \mathbf{U}_{t}^{i} : control variable (energy production)
- \mathbf{F}_{t}^{i} : grid flow (import/export from the grid)
- \mathbf{W}_{t}^{i} : noise
(consumption, renewable)

Writing the problem for each node

For each node $i \in \llbracket 1, N \rrbracket$:

- The dynamic $x_{t+1}^{i}=f_{t}^{i}\left(x_{t}^{i}, u_{t}^{i}, w_{t}^{i}\right)$ writes

$$
x_{t+1}^{i}=x_{t}^{i}+\underbrace{a_{t}^{i}}_{\text {inflow }}-\underbrace{p_{t}^{i}}_{\text {turbinate }}-\underbrace{s_{t}^{i}}_{\text {spillage }}
$$

- The load balance (supply $=$ demand $)$ gives

$$
\underbrace{p_{t}^{i}}_{\text {turbinate }}+\underbrace{g_{t}^{i}}_{\text {thermal }}+\underbrace{r_{t}^{i}}_{\text {recourse }}+\underbrace{f_{t}^{i}}_{\text {grid flow }}=\underbrace{d_{t}^{i}}_{\text {demand }}
$$

Thus, we explicit w_{t}^{i} and u_{t}^{i} :

$$
w_{t}^{i}=\left(a_{t}^{i}, d_{t}^{i}\right), \quad u_{t}^{i}=\left(p_{t}^{i}, s_{t}^{i}, g_{t}^{i}, r_{t}^{i}\right)
$$

We pay to use the thermal power plant and we penalize the recourse:

$$
L_{t}^{i}\left(x_{t}^{i}, u_{t}^{i}, f_{t}^{i}, w_{t}^{i}\right)=\underbrace{\alpha_{t}^{i}\left(g_{t}^{i}\right)^{2}+\beta_{t}^{i} g_{t}^{i}}_{\text {quadratic cost }}+\underbrace{\kappa_{t}^{i} r_{t}^{i}}_{\text {recourse penalty }}
$$

A stochastic optimization problem decoupled in space

At each node i of the grid, we have to solve a stochastic optimal control subproblem depending on the grid flow process $\mathbf{F}^{i:}{ }^{2}$

$$
\begin{array}{rl}
J_{\mathfrak{P}}^{i}\left[\mathbf{F}^{i}\right]=\min _{\mathbf{x}^{i}, \mathbf{U}^{i}} & \mathbb{E}\left(\sum_{t=0}^{T-1} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{W}_{t+1}^{i}\right)+K^{i}\left(\mathbf{X}_{T}^{i}\right)\right), \\
\text { s.t. } & \mathbf{X}_{t+1}^{i}=f_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{W}_{t+1}^{i}\right), \\
& \mathbf{X}_{t}^{i} \in \mathcal{X}_{t}^{i, \text { ad }}, \quad \mathbf{U}_{t}^{i} \in \mathcal{U}_{t}^{i, \text { ad }} \\
& \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t},
\end{array}
$$

The last equation is the measurability constraint, where \mathcal{F}_{t} is the σ-field generated by the noises $\left\{\mathbf{W}_{\tau}^{i}\right\}_{\tau=1 \ldots t}$ up to time t.

[^1]
Modeling exchanges between countries

The grid is represented by a directed graph $\mathcal{G}=(\mathcal{N}, \mathcal{A})$. At each time $t \in \llbracket 0, T-1 \rrbracket$ we have:

- a flow \mathbf{Q}_{t}^{a} through each arc a, inducing a $\operatorname{cost} c_{t}^{a}\left(\mathbf{Q}_{t}^{a}\right)$,
 modeling the exchange between two countries
- a grid flow \mathbf{F}_{t}^{i} at each node i, resulting from the balance equation

$$
\mathbf{F}_{t}^{i}=\sum_{a \in \text { input }(i)} \mathbf{Q}_{t}^{a}-\sum_{b \in \text { output }(i)} \mathbf{Q}_{t}^{b}
$$

A transport cost decoupled in time

At each time step $t \in \llbracket 0, T-1 \rrbracket$, we define the transport cost as the sum of the cost of the flows \mathbf{Q}_{t}^{a} through the arcs a of the grid:

$$
J_{\mathfrak{T}, t}\left[\mathbf{Q}_{t}\right]=\mathbb{E}\left(\sum_{a \in \mathcal{A}} c_{t}^{a}\left(\mathbf{Q}_{t}^{a}\right)\right),
$$

where the c_{t}^{a} 's are easy to compute functions (say quadratic).

Kirchhoff's law

The balance equation stating the conservation between \mathbf{Q}_{t} and \mathbf{F}_{t} rewrites in the following matrix form:

$$
A \mathbf{Q}_{t}+\mathbf{F}_{t}=0
$$

where A is the node-arc incidence matrix of the grid.

The overall production transport problem

The production cost $J_{\mathfrak{F}}$ aggregates the costs at all nodes i :

$$
J_{\mathfrak{P}}[\mathbf{F}]=\sum_{i \in \mathcal{N}} J_{\mathfrak{P}}^{i}\left[\mathbf{F}^{i}\right],
$$

and the transport cost $J_{\mathfrak{T}}$ aggregates the costs at all time t :

$$
J_{\mathfrak{T}}[\mathbf{Q}]=\sum_{t=0}^{T-1} J_{\mathfrak{T}, t}\left[\mathbf{Q}_{t}\right]
$$

The compact production-transport problem formulation writes:

$$
\begin{array}{ll}
\min _{\mathbf{Q}, \mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}] \tag{P}\\
& \text { s.t. } A \mathbf{Q}+\mathbf{F}=0 .
\end{array}
$$

Resolution methods

Where are we heading to?

The problem P has:

- N nodes (with $N=8$);
- T time steps (with $T=12$ or $T=52$);
- N independent random variables per time step $t: \mathbf{W}_{t}^{1}, \cdots, \mathbf{W}_{t}^{N}$.

We aim to solve the problem numerically. We suppose that for all t, \mathbf{W}_{t}^{i} is a discrete random variable, with support size $\mathfrak{n}_{\text {bin }}$. Thus, the random variable

$$
\mathbf{W}_{t}=\left(\mathbf{W}_{t}^{1}, \cdots, \mathbf{W}_{t}^{N}\right),
$$

has a support size $\mathfrak{n}_{\text {bin }}^{N}$ (because of the independence).

First idea: solving the whole problem inplace!

Write the problem and solve it!

But ...

- N nodes and T time steps.
- Non-anticipativity constraint: we ought to formulate the problem on a tree (Stochastic Programming approach)

$$
\text { number of nodes }=\left(\mathfrak{n}_{\text {bin }}^{N}\right)^{T}=\mathfrak{n}_{\text {bin }}^{N T},
$$

giving a complexity in $\mathcal{O}\left(\mathfrak{n}_{\text {bin }}^{N T}\right)$.

The problem is not tractable ...

Second idea: decomposition with Dynamic Programming

We assumed that the noise $\mathbf{W}_{0}, \cdots, \mathbf{W}_{T}$ were independent.
We decompose the problem time step by time step $\rightarrow T$ subproblems
P :

The complexity reduces to $\mathcal{O}\left(T_{\mathfrak{n}}^{N}\right)$. We use Dynamic Programming to compute the value functions V_{1}, \cdots, V_{T}.

But ...

- N nodes: curse of dimensionality
- Still a support size $\mathfrak{n}_{\text {bin }}^{N}$ for \mathbf{W}_{t}

We use Stochastic Dual Dynamic Programming to solve the problem with $N=8$ dimensions.

A brief recall on Stochastic Dynamic Programming

Dynamic Programming

We compute value functions with the backward equation:

$$
\begin{aligned}
& V_{T}(x)=K(x) \\
& V_{t}\left(x_{t}\right)=\min _{u_{t}} \mathbb{E}[\underbrace{L_{t}\left(x_{t}, u_{t}, \mathbf{W}_{t+1}\right)}_{\text {current cost }}+\underbrace{V_{t+1}\left(f\left(x_{t}, u_{t}, \mathbf{W}_{t+1}\right)\right)}_{\text {future costs }}]
\end{aligned}
$$

Stochastic Dual Dynamic Programming

- Convex value functions V_{t} are approximated as a supremum of a finite set of affine functions

- Affine functions (=cuts) are computed during forward/backward passes, till convergence

$$
\widetilde{V}_{t}(x)=\max _{1 \leq k \leq K}\left\{\lambda_{t}^{k} x+\beta_{t}^{k}\right\} \leq V_{t}(x)
$$

- SDDP makes an extensive use of LP/QP solver

Third idea: spatial decomposition

We decompose the problem time by time and node by node to obtain $N \times T$ decomposed subproblems:

The complexity reduces to $\mathcal{O}\left(N T n_{\text {bin }}\right)$! But ...

Introducing decomposition methods

The decomposition/coordination methods we want to deal with are iterative algorithms involving the following ingredients.

- Decompose the global problem in several subproblems of smaller size by dualizing the constraint $A \mathbf{Q}+\mathbf{F}=0$,
- Coordinate at each iteration the subproblems using the price λ.

- Solve the subproblems using Dynamic Programming, taking into account the price transmitted by the coordination.

Approximating the subproblems

In both cases, the subproblems encompass a new "noise", that is, the price multiplier $\boldsymbol{\lambda}_{t}^{(k)}$, which may be correlated in time.
The white noise assumption fails.
Dynamic Programming cannot be used for solving the subproblems.

Approximating the subproblems

In both cases, the subproblems encompass a new "noise", that is, the price multiplier $\boldsymbol{\lambda}_{t}^{(k)}$, which may be correlated in time.
The white noise assumption fails.
Dynamic Programming cannot be used for solving the subproblems.

In order to overcome this difficulty, we use a trick that involves approximating the new noise $\boldsymbol{\lambda}_{t}^{k}$ by its conditional expectation w.r.t. a chosen random variable \mathbf{Y}_{t}.

Approximating the subproblems

In both cases, the subproblems encompass a new "noise", that is, the price multiplier $\boldsymbol{\lambda}_{t}^{(k)}$, which may be correlated in time.
The white noise assumption fails.
Dynamic Programming cannot be used for solving the subproblems.

In order to overcome this difficulty, we use a trick that involves approximating the new noise $\boldsymbol{\lambda}_{t}^{k}$ by its conditional expectation w.r.t. a chosen random variable \mathbf{Y}_{t}.

Assume that the process \mathbf{Y} has a given dynamics:

$$
\mathbf{Y}_{t+1}=h_{t}\left(\mathbf{Y}_{t}, \mathbf{W}_{t+1}\right)
$$

If noises \mathbf{W}_{t} 's are time independent, then $\left(\mathbf{X}_{t}^{i}, \mathbf{Y}_{t}\right)$ is a valid state for the i-th subproblem and Dynamic Programming applies.

Price decomposition

The production and transport optimization problem writes

$$
\begin{equation*}
\min _{\mathbf{Q}, \mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}] \quad \text { s.t. } \quad A \mathbf{Q}+\mathbf{F}=0 \tag{P}
\end{equation*}
$$

The decomposition scheme consists in dualizing the constraint, and then in approximating the multiplier $\boldsymbol{\lambda}$ by its conditional expectation w.r.t. \mathbf{Y}. This trick leads to the following problem

$$
\max _{\boldsymbol{\lambda}} \min _{\mathbf{Q}, \mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}]+\langle\mathbb{E}(\boldsymbol{\lambda} \mid \mathbf{Y}), A \mathbf{Q}+\mathbf{F}\rangle
$$

It is not difficult to prove that this dual problem is associated to the following relaxed primal problem:

$$
\min _{\mathbf{Q}, \mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}] \quad \text { s.t. } \quad \mathbb{E}(A \mathbf{Q}+\mathbf{F} \mid \mathbf{Y})=0
$$

and hence provides a lower bound of (\mathcal{P}).

A dual gradient-like algorithm

Applying the Uzawa algorithm to the dual problem

$$
\max _{\boldsymbol{\lambda}} \min _{\mathbf{Q}, \mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}]+\langle\mathbb{E}(\boldsymbol{\lambda} \mid \mathbf{Y}), A \mathbf{Q}+\mathbf{F}\rangle
$$

leads to a decomposition between production and transport:

$$
\begin{array}{ll}
\mathbf{F}^{(k+1)} \in \underset{\mathbf{F}}{\arg \min } J_{\mathfrak{F}}[\mathbf{F}]+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right), \mathbf{F}\right\rangle, & \text { Produ } \\
\mathbf{Q}^{(k+1)} \in \underset{\mathbf{Q}}{\arg \min } J_{\mathfrak{E}}[\mathbf{Q}]+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right), A \mathbf{Q}\right\rangle, & \text { Trans } \\
\mathbb{E}\left(\boldsymbol{\lambda}^{(k+1)} \mid \mathbf{Y}\right)=\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right)+\rho \mathbb{E}\left(A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)} \mid \mathbf{Y}\right) \text {. Update }
\end{array}
$$

Decomposing the transport problem

The transport subproblem

$$
\min _{\mathbf{Q}} J_{\mathfrak{T}}[\mathbf{Q}]+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right), A \mathbf{Q}\right\rangle,
$$

writes in a detailled manner

$$
\min _{\mathbf{Q}} \sum_{t=0}^{T-1} \mathbb{E}\left(\sum_{a \in \mathcal{A}} c_{t}^{a}\left(\mathbf{Q}_{t}^{a}\right)+\left\langle A^{\top} \mathbb{E}\left(\boldsymbol{\lambda}_{t}^{(k)} \mid \mathbf{Y}_{t}\right), \mathbf{Q}_{t}\right\rangle\right) .
$$

This minimization subproblem is evidently decomposable in time (t by t) and in space (arc by arc), leading to a collection of easy to solve subproblems.

Decomposing the production problem

The production subproblem

$$
\min _{\mathbf{F}} J_{\mathfrak{P}}[\mathbf{F}]+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right), \mathbf{F}\right\rangle,
$$

evidently decomposes node by node

$$
\min _{\mathbf{F}^{i}} J_{\mathfrak{P}}^{j}\left[\mathbf{F}^{i}\right]+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}^{i,(k)} \mid \mathbf{Y}\right), \mathbf{F}^{i}\right\rangle,
$$

hence a stochastic optimal control subproblem for each node i :

$$
\begin{array}{rl}
\min _{\mathbf{x}^{i}, \mathbf{U}^{i}, \mathbf{F}^{i}} & \mathbb{E}\left(\sum_{t=0}^{T-1}\left(L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{W}_{t+1}\right)+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}_{t}^{i,(k)} \mid \mathbf{Y}_{t}\right), \mathbf{F}_{t}^{i}\right\rangle\right)+K^{i}\left(\mathbf{X}_{T}^{i}\right)\right) \\
\text { s.t. } & \mathbf{X}_{t+1}^{i}=f_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{W}_{t+1}\right) \\
& \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t} .
\end{array}
$$

Solving the production subproblems by DP

Assuming that

- the process \mathbf{W} is a white noise,
- the process \mathbf{Y} follows a dynamics $\mathbf{Y}_{t+1}=h_{t}\left(\mathbf{Y}_{t}, \mathbf{W}_{t+1}\right)$,

Dynamic Programming applies for production subproblems:

$$
\begin{aligned}
& V_{T}^{i}(x, y)=K^{i}(x) \\
& \begin{aligned}
& V_{t}(x, y)=\min _{u, f} \mathbb{E}\left(L_{t}^{i}\left(x, u, f, \mathbf{W}_{t+1}\right)\right. \\
&\left.+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}_{t}^{i,(k)} \mid \mathbf{Y}_{t}=y\right), f\right\rangle+V_{t+1}^{i}\left(\mathbf{X}_{t+1}^{i}, \mathbf{Y}_{t+1}\right)\right) \\
& \text { s.t. } \mathbf{X}_{t+1}^{i}=f_{t}^{i}\left(x, u, f, \mathbf{W}_{t+1}\right) \\
& \mathbf{Y}_{t+1}=h_{t}\left(y, \mathbf{W}_{t+1}\right)
\end{aligned}
\end{aligned}
$$

Numerical implementation

Our stack is deeply rooted in Julia language

- Modeling Language: JuMP
- Open-source SDDP Solver: StochDynamicProgramming.jl
- LP/QP Solver: Gurobi 7.02
https://github.com/JuliaOpt/StochDynamicProgramming.jl

Implementation of SDDP and DADP

- Implementing SDDP is straightforward
- DADP implementation is more elaborated:

$$
\mathbb{E}\left(\boldsymbol{\lambda}^{(k+1)} \mid \mathbf{Y}\right)=\mathbb{E}\left(\boldsymbol{\lambda}^{(k)} \mid \mathbf{Y}\right)+\rho \mathbb{E}\left(A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)} \mid \mathbf{Y}\right) .
$$

We use a crude relaxation:

- We choose $\mathbf{Y}=0$. We denote $\underline{\lambda}^{(k)}=\mathbb{E}\left(\boldsymbol{\lambda}^{(k)}\right)$. The update becomes

$$
\underline{\lambda}^{(k+1)}=\underline{\lambda}^{(k)}+\underbrace{\rho}_{\text {Update step }} \underbrace{\mathbb{E}\left(A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)}\right)}_{\text {Monte Carlo }}
$$

- Unfortunately, we do not know the Lipschitz constant of the derivative!
- And the problem is not even strongly convex ...

We compare three algorithms for gradient ascent

- Quasi-Newton (BFGS): To ensure strong convexity, we add a quadratic term to the cost: $\hat{L}_{t}^{i}()=.L_{t}^{i}()+.u^{\top} Q u$, with $Q \succ 0$. The update is:

$$
\underline{\lambda}^{(k+1)}=\underline{\lambda}^{(k)}+\rho^{(k)} \hat{\mathbb{E}}\left\{A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)}\right\}
$$

- Alternating Direction Method of Multipliers (ADMM): we add an augmented Lagrangian to solve the problem. The update becomes

$$
\underline{\lambda}^{(k+1)}=\underline{\lambda}^{(k)}+\frac{\tau}{2} \hat{\mathbb{E}}\left(A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)}\right)
$$

- Stochastic Gradient Descent (SGD):

$$
\underline{\lambda}^{(k+1)}=\underline{\lambda}^{(k)}+\frac{1}{1+k}\left(A \mathbf{Q}^{(k+1)}+\mathbf{F}^{(k+1)}\right)(\omega) .
$$

	BFGS	ADMM	SGD
ρ	line search	$\rho^{(k)} \rightarrow \tau$	$1 /(1+k)$
MC size	$100-1000$	$100-1000$	1
software	L-BFGS-B	self	self

Double, double toil and trouble

Digesting the stochastic caldron, between time and space ...

- Global problem P

$$
\begin{aligned}
\min _{\mathbf{Q}, \mathbf{F}} & J_{\mathfrak{P}}[\mathbf{F}]+J_{\mathfrak{T}}[\mathbf{Q}] \\
& \text { s.t. } A \mathbf{Q}+\mathbf{F}=0 .
\end{aligned}
$$

- Decomposed subproblem P_{i}

$$
\begin{array}{r}
J_{\mathfrak{P}}\left(\mathbf{F}^{i}\right)=\min _{\mathbf{x}^{i}, \mathbf{u}^{i}, \mathbf{F}^{i}} \mathbb{E}\left(\sum _ { t = 0 } ^ { T - 1 } \left(L_{t}^{i}\left(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{w}_{t+1}\right)+\right.\right. \\
\left.\left.\left\langle\mathbb{E}\left(\boldsymbol{\lambda}_{t}^{i,(k)} \mid \mathbf{Y}_{t}\right), \mathbf{F}_{t}^{i}\right\rangle\right)+\kappa^{i}\left(\mathbf{X}_{T}^{i}\right)\right) \\
\text { s.t. } \mathbf{x}_{t+1}^{i}=f_{t}^{i}\left(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}, \mathbf{F}_{t}^{i}, \mathbf{w}_{t+1}\right)
\end{array}
$$

- DP subproblem V_{t}^{i}

$$
\begin{array}{rl}
v_{t}^{i}(x, y)=\min _{u, f} & \mathbb{E}\left(L_{t}^{i}\left(x, u, f, \mathbf{w}_{t+1}\right)\right. \\
& \left.+\left\langle\mathbb{E}\left(\boldsymbol{\lambda}_{t}^{i,(k)} \mid \mathbf{Y}_{t}=y\right), f\right\rangle+v_{t+1}^{i}\left(\mathbf{X}_{t+1}^{i}, \mathbf{Y}_{t+1}\right)\right)
\end{array}
$$

Results — Monthly

Compute Bellman value functions at monthly time steps ($T=12$).

$\mathfrak{n}_{\text {bin }}$	1	2	5
SDDP value	5.048	5.203	$+\infty$
SDDP time	$0.5^{\prime \prime}$	$87^{\prime \prime}$	$+\infty$
BFGS value	5.088	5.202	5.286
BFGS time	$18^{\prime \prime}$	$49^{\prime \prime}$	$161^{\prime \prime}$
ADMM value	5.087	5.201	5.288
ADMM time	$14^{\prime \prime}$	$49^{\prime \prime}$	$66^{\prime \prime}$
SGD value	5.088	5.202	5.292
SGD time	$37 \prime \prime$	$66^{\prime \prime}$	$130 \prime \prime$

- SDDP does not converge if $\mathfrak{n}_{\text {bin }}=5$.
- If $\mathfrak{n}_{b i n}=1$, SDDP is better than DADP because of the discretization scheme used in Dynamic Programming.
- BFGS and ADMM compute a gradient with Monte-Carlo ...
- BFGS does not solve the original problem (strong convexification)

Results — Weekly

Compute Bellman value functions at weekly time steps ($T=52$).

$\mathfrak{n}_{\text {bin }}$	1	2	5
SDDP value	9.396	9.687	$+\infty$
SDDP time	$8^{\prime \prime}$	$928^{\prime \prime}$	$+\infty$
BFGS value	9.411	9.687	9.974
BFGS time	$69^{\prime \prime}$	$157^{\prime \prime}$	$575^{\prime \prime}$
ADMM value	9.404	9.682	9.984
ADMM time	$65^{\prime \prime}$	$326^{\prime \prime}$	$643^{\prime \prime}$
SGD value	9.411	9.679	9.971
SGD time	$194^{\prime \prime}$	$281^{\prime \prime}$	$712^{\prime \prime}$

- The longer the horizon, the slower SDDP is.
- Here, BFGS is penalized by line-search, as it uses an approximated gradient
- SGD works quite well compared to BFGS and ADMM: these two algorithms are penalized by the Monte-Carlo computation of the gradient.

Multipliers convergence

Figure 1: Convergence of multipliers with BFGS $\left(T=12, \mathfrak{n}_{b i n}=1\right)$.

SDDP convergence

Figure 2: Convergence of SDDP's upper and lower bounds ($T=52, \mathfrak{n}_{\text {bin }}=2$).

Conclusion

Conclusion

Conclusion

- A survey of different algorithms, mixing spatial and time decomposition.
- DADP works well with the crude relaxation $\mathbf{Y}=0$, and even beats SDDP if $\mathfrak{n}_{\text {bin }} \geq 2$.
- We had a lot of troubles to deal with approximate gradients!

Perspectives

- Find a proper information process \mathbf{Y}.
- Improve the integration between SDDP and DADP.
- Test other decomposition schemes (by quantity, by prediction).
P. Carpentier et G. Cohen.

Décomposition-coordination en optimisation déterministe et stochastique.
En préparation, Springer, 2016.
R
P. Girardeau.

Résolution de grands problèmes en optimisation stochastique dynamique.
Thèse de doctorat, Université Paris-Est, 2010.
图 V. Leclère.
Contributions aux méthodes de décomposition en optimisation stochastique.
Thèse de doctorat, Université Paris-Est, 2014.
图 A. Lenoir and P. Mahey.
A survey of monotone operator splitting methods and decomposition of convex programs.

RAIRO Operations Research 51, 17-41, 2017.

Philippe Mahey, Jonas Koko, Arnaud Lenoir and Luc Marchand. Coupling decomposition with dynamic programming for a stochastic spatial model for long-term energy pricing problem.

Zhu, Ciyou and Byrd, Richard H and Lu, Peihuang and Nocedal, Jorge.

L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization . ACM Transactions on Mathematical Software (TOMS), 23-4, 1997.

Dams trajectory

SGD convergence

Plotting the convergence with $T=52$ and $\mathfrak{n}_{\text {bin }}=2$.

ADMM convergence

Plotting the logarithm of the norm of the primal residual with $T=52$ and $\mathfrak{n}_{\text {bin }}=5$.

[^0]: ${ }^{1}$ But the framework remains valid for smaller energy management problems.

[^1]: ${ }^{2}$ The notation $J_{\mathfrak{P}}^{i}[\cdot]$ means that the argument of $J_{\mathfrak{W}}^{i}$ is a random variable.

