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Motivation

An energy production and transport optimization problem on a grid

modeling energy exchange across European countries.1
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• Stochastic dynamical problem.

• Discrete time formulation (weekly or monthly time steps).

• Large-scale problem (8 countries).

1But the framework remains valid for smaller energy management problems.
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Modelling



Production at each node of the grid

At each node i of the grid, we formulate a production problem on a

discrete time horizon J0,T K, involving the following variables at each

time t:

Wi
t

Xi
t

Ui
t

Qa
t

Qb
t

Fi
t

• Xi
t : state variable

(dam volume)

• Ui
t : control variable

(energy production)

• Fi
t : grid flow

(import/export from the grid)

• Wi
t : noise

(consumption, renewable)
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Writing the problem for each node

For each node i ∈ J1,NK:

• The dynamic x it+1 = f it (x it , u
i
t ,w

i
t ) writes

x it+1 = x it + ait︸︷︷︸
inflow

− pit︸︷︷︸
turbinate

− s it︸︷︷︸
spillage

.

• The load balance (supply = demand) gives

pit︸︷︷︸
turbinate

+ g i
t︸︷︷︸

thermal

+ r it︸︷︷︸
recourse

+ f it︸︷︷︸
grid flow

= d i
t︸︷︷︸

demand

.

Thus, we explicit w i
t and uit :

w i
t = (ait , d

i
t ) , uit = (pit , s

i
t , g

i
t , r

i
t ) .

We pay to use the thermal power plant and we penalize the recourse:

Lit(x
i
t , u

i
t , f

i
t ,w

i
t ) = αi

t(g
i
t )2 + βi

tg
i
t︸ ︷︷ ︸

quadratic cost

+ κitr
i
t︸︷︷︸

recourse penalty

.
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A stochastic optimization problem decoupled in space

At each node i of the grid, we have to solve a stochastic optimal control

subproblem depending on the grid flow process Fi :2

J iP[Fi ] = min
Xi ,Ui

E
( T−1∑

t=0

Lit(Xi
t ,U

i
t ,F

i
t ,W

i
t+1) + K i (Xi

T )
)
,

s.t. Xi
t+1 = f it (Xi

t ,U
i
t ,F

i
t ,W

i
t+1) ,

Xi
t ∈ X

i,ad

t , Ui
t ∈ U

i,ad

t ,

Ui
t � Ft ,

The last equation is the measurability constraint, where Ft is

the σ-field generated by the noises {Wi
τ}τ=1...t up to time t.

2The notation J iP[·] means that the argument of J iP is a random variable.
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Modeling exchanges between countries

The grid is represented by a directed graph G = (N ,A). At each time

t ∈ J0,T − 1K we have:

Fi
t

Qa
t

• a flow Qa
t through each arc a,

inducing a cost cat (Qa
t ),

modeling the exchange between

two countries

• a grid flow Fi
t at each node i ,

resulting from the balance

equation

Fi
t =

∑
a∈input(i)

Qa
t −

∑
b∈output(i)

Qb
t

8/31



A transport cost decoupled in time

At each time step t ∈ J0,T − 1K , we define the transport cost as the

sum of the cost of the flows Qa
t through the arcs a of the grid:

JT,t [Qt ] = E
(∑

a∈A
cat (Qa

t )
)
,

where the cat ’s are easy to compute functions (say quadratic).

Kirchhoff’s law

The balance equation stating the conservation between Qt and Ft

rewrites in the following matrix form:

AQt + Ft = 0 ,

where A is the node-arc incidence matrix of the grid.
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The overall production transport problem

The production cost JP aggregates the costs at all nodes i :

JP[F] =
∑
i∈N

J iP[Fi ] ,

and the transport cost JT aggregates the costs at all time t:

JT[Q] =
T−1∑
t=0

JT,t [Qt ] .

The compact production-transport problem formulation writes:

min
Q,F

JP[F] + JT[Q] (P)

s.t. AQ + F = 0 .
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Resolution methods



Where are we heading to?

The problem P has:

• N nodes (with N = 8);

• T time steps (with T = 12 or T = 52);

• N independent random variables per time step t: W1
t , · · · ,WN

t .

We aim to solve the problem numerically. We suppose that for all t, Wi
t

is a discrete random variable, with support size nbin. Thus, the random

variable

Wt = (W1
t , · · · ,W

N
t ) ,

has a support size nNbin (because of the independence).
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First idea: solving the whole problem inplace!

Write the problem and solve it!

P

But ...

• N nodes and T time steps.

• Non-anticipativity constraint: we ought to formulate

the problem on a tree (Stochastic Programming approach)

number of nodes = (nNbin)T = nNTbin ,

giving a complexity in O(nNTbin ).

The problem is not tractable ...
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Second idea: decomposition with Dynamic Programming

We assumed that the noise W0, · · · ,WT were independent.

We decompose the problem time step by time step → T subproblems

P : V1 V2 V3 VT

The complexity reduces to O(TnNbin). We use Dynamic Programming to

compute the value functions V1, · · · ,VT .

But ...

• N nodes: curse of dimensionality

• Still a support size nNbin for Wt

We use Stochastic Dual Dynamic Programming to solve the problem

with N = 8 dimensions.
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A brief recall on Stochastic Dynamic Programming

Dynamic Programming

We compute value functions with the backward equation:

VT (x) = K(x)

Vt(xt) = min
ut

E
[
Lt(xt , ut ,Wt+1)︸ ︷︷ ︸

current cost

+Vt+1

(
f (xt , ut ,Wt+1)

)
︸ ︷︷ ︸

future costs

]

Stochastic Dual Dynamic Programming
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• Convex value functions Vt are approximated as

a supremum of a finite set of affine functions

• Affine functions (=cuts) are computed during

forward/backward passes, till convergence

Ṽt(x) = max
1≤k≤K

{
λkt x + βk

t

}
≤ Vt(x)

• SDDP makes an extensive use of LP/QP
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Third idea: spatial decomposition

We decompose the problem time by time and node by node to obtain

N × T decomposed subproblems:

P1 :

P2 :

...

PN :

V 1
1 V 1

2 V 1
3 V 1

T

V 2
1 V 2

2 V 2
3 V 2

T

V N
1 V N

2 V N
3 V N

T

λ1
1

λ2N
1

λ1N
1

λ12
2

λ2N
2

λ12
3

λ2N
3

The complexity reduces to O(NTnbin)! But ...

How to compute the different λ? 15/31



Introducing decomposition methods

The decomposition/coordination methods we want to deal with are

iterative algorithms involving the following ingredients.

• Decompose the global problem in several subproblems

of smaller size by dualizing the constraint AQ + F = 0,

• Coordinate at each iteration the subproblems using

the price λ.

AQ + F︸︷︷︸
allocation

= 0 ; λ︸︷︷︸
price

• Solve the subproblems using Dynamic Programming,

taking into account the price transmitted by the coordination.
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Approximating the subproblems

In both cases, the subproblems encompass a new “noise”, that is,

the price multiplier λ
(k)
t , which may be correlated in time.

The white noise assumption fails.

Dynamic Programming cannot be used for solving the subproblems.

In order to overcome this difficulty, we use a trick that involves

approximating the new noise λk
t by its conditional expectation w.r.t. a

chosen random variable Yt .

Assume that the process Y has a given dynamics:

Yt+1 = ht(Yt ,Wt+1) .

If noises Wt ’s are time independent, then (Xi
t ,Yt) is a valid state for the

i-th subproblem and Dynamic Programming applies.
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Price decomposition

The production and transport optimization problem writes

min
Q,F

JP[F] + JT[Q] s.t. AQ + F = 0 .
(
P
)

The decomposition scheme consists in dualizing the constraint, and then

in approximating the multiplier λ by its conditional expectation w.r.t. Y.

This trick leads to the following problem

max
λ

min
Q,F

JP[F] + JT[Q] +
〈
E(λ | Y) ,AQ + F

〉
.

It is not difficult to prove that this dual problem is associated

to the following relaxed primal problem:

min
Q,F

JP[F] + JT[Q] s.t. E
(
AQ + F

∣∣ Y
)

= 0 ,

and hence provides a lower bound of
(
P
)
.
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A dual gradient-like algorithm

Applying the Uzawa algorithm to the dual problem

max
λ

min
Q,F

JP[F] + JT[Q] +
〈
E(λ | Y) ,AQ + F

〉
,

leads to a decomposition between production and transport:

F(k+1) ∈ arg min
F

JP[F] +
〈
E
(
λ(k)

∣∣ Y
)
,F
〉
, Production

Q(k+1) ∈ arg min
Q

JT[Q] +
〈
E
(
λ(k)

∣∣ Y
)
,AQ

〉
, Transport

E
(
λ(k+1)

∣∣ Y
)

= E
(
λ(k)

∣∣ Y
)

+ ρ E
(
AQ(k+1) + F(k+1)

∣∣ Y
)
. Update
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Decomposing the transport problem

The transport subproblem

min
Q

JT[Q] +
〈
E
(
λ(k)

∣∣ Y
)
,AQ

〉
,

writes in a detailled manner

min
Q

T−1∑
t=0

E
(∑

a∈A
cat (Qa

t ) +
〈
A>E

(
λ

(k)
t

∣∣ Yt

)
,Qt

〉)
.

This minimization subproblem is evidently decomposable in time

(t by t) and in space (arc by arc), leading to a collection of easy

to solve subproblems.
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Decomposing the production problem

The production subproblem

min
F

JP[F] +
〈
E
(
λ(k)

∣∣ Y
)
,F
〉
,

evidently decomposes node by node

min
Fi

J iP[Fi ] +
〈
E
(
λi,(k)

∣∣ Y
)
,Fi
〉
,

hence a stochastic optimal control subproblem for each node i :

min
Xi ,Ui ,Fi

E
( T−1∑

t=0

(
Li
t(Xi

t ,U
i
t ,F

i
t ,Wt+1) +

〈
E
(
λ

i,(k)
t

∣∣ Yt

)
,Fi

t

〉)
+ K i (Xi

T )

)
s.t. Xi

t+1 = f it (Xi
t ,U

i
t ,F

i
t ,Wt+1)

Ui
t � Ft .
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Solving the production subproblems by DP

Assuming that

• the process W is a white noise,

• the process Y follows a dynamics Yt+1 = ht(Yt ,Wt+1),

Dynamic Programming applies for production subproblems:

V i
T (x , y) = K i (x)

Vt(x , y) = min
u,f

E
(
Lit(x , u, f ,Wt+1)

+
〈
E
(
λ
i,(k)
t

∣∣ Yt = y
)
, f
〉

+ V i
t+1(Xi

t+1,Yt+1)
)

s.t. Xi
t+1 = f it (x , u, f ,Wt+1) ,

Yt+1 = ht(y ,Wt+1) .
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Numerical implementation



Our stack is deeply rooted in Julia language

• Modeling Language: JuMP

• Open-source SDDP Solver:

StochDynamicProgramming.jl

• LP/QP Solver: Gurobi 7.02

https://github.com/JuliaOpt/StochDynamicProgramming.jl
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Implementation of SDDP and DADP

• Implementing SDDP is straightforward

• DADP implementation is more elaborated:

E
(
λ(k+1)

∣∣ Y
)

= E
(
λ(k)

∣∣ Y
)

+ ρ E
(
AQ(k+1) + F(k+1)

∣∣ Y
)
.

We use a crude relaxation:

• We choose Y = 0. We denote λ(k) = E
(
λ(k)

)
. The update becomes

λ(k+1) = λ(k) + ρ︸︷︷︸
Update step

E
(
AQ(k+1) + F(k+1))︸ ︷︷ ︸

Monte Carlo

.

• Unfortunately, we do not know the Lipschitz constant of the

derivative!

• And the problem is not even strongly convex ...
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We compare three algorithms for gradient ascent

• Quasi-Newton (BFGS): To ensure strong convexity, we add a quadratic term to the cost:

L̂i
t(.) = Li

t(.) + u>Qu, with Q � 0. The update is:

λ
(k+1) = λ

(k) + ρ
(k) Ê

{
AQ(k+1) + F(k+1)}

.

• Alternating Direction Method of Multipliers (ADMM): we add an augmented Lagrangian to

solve the problem. The update becomes

λ
(k+1) = λ

(k) +
τ

2
Ê
(
AQ(k+1) + F(k+1))

.

• Stochastic Gradient Descent (SGD):

λ
(k+1) = λ

(k) +
1

1 + k

(
AQ(k+1) + F(k+1))(ω) .

BFGS ADMM SGD

ρ line search ρ(k) → τ 1/(1 + k)

MC size 100-1000 100-1000 1

software L-BFGS-B3 self self

3The famous implementation of [Zhu et al, 1997]
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Double, double toil and trouble

Digesting the stochastic caldron, between time and space ...

BFGS ADMM SGD

DP

QP

• Global problem P

min
Q,F

JP[F] + JT[Q]

s.t. AQ + F = 0 .

• Decomposed subproblem Pi

JP(Fi ) = min
Xi ,Ui ,Fi

E
( T−1∑

t=0

(
Lit (Xi

t , Ui
t , Fit , Wt+1)+

〈
E
(
λ
i,(k)
t

∣∣ Yt
)
, Fit

〉)
+ Ki (Xi

T )

)
s.t. Xi

t+1 = f it (Xi
t , Ui

t , Fit , Wt+1)

• DP subproblem V i
t

V i
t (x, y) = min

u,f
E
(
Lit (x, u, f , Wt+1)

+
〈
E
(
λ
i,(k)
t

∣∣ Yt = y
)
, f
〉

+ V i
t+1(Xi

t+1, Yt+1)
)
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Results — Monthly

Compute Bellman value functions at monthly time steps (T = 12).

nbin 1 2 5

SDDP value 5.048 5.203 +∞
SDDP time 0.5” 87” +∞

BFGS value 5.088 5.202 5.286

BFGS time 18” 49” 161”

ADMM value 5.087 5.201 5.288

ADMM time 14” 49” 66”

SGD value 5.088 5.202 5.292

SGD time 37” 66” 130”

• SDDP does not converge if nbin = 5.

• If nbin = 1, SDDP is better than DADP because of the discretization

scheme used in Dynamic Programming.

• BFGS and ADMM compute a gradient with Monte-Carlo ...

• BFGS does not solve the original problem (strong convexification)
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Results — Weekly

Compute Bellman value functions at weekly time steps (T = 52).

nbin 1 2 5

SDDP value 9.396 9.687 +∞
SDDP time 8” 928” +∞

BFGS value 9.411 9.687 9.974

BFGS time 69” 157” 575”

ADMM value 9.404 9.682 9.984

ADMM time 65” 326” 643”

SGD value 9.411 9.679 9.971

SGD time 194” 281” 712”

• The longer the horizon, the slower SDDP is.

• Here, BFGS is penalized by line-search, as it uses

an approximated gradient

• SGD works quite well compared to BFGS and ADMM: these two

algorithms are penalized by the Monte-Carlo computation of the gradient.
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Multipliers convergence
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Figure 1: Convergence of multipliers with BFGS (T = 12, nbin = 1).
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SDDP convergence
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Figure 2: Convergence of SDDP’s upper and lower bounds (T = 52, nbin = 2).
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Conclusion



Conclusion

Conclusion

• A survey of different algorithms, mixing spatial

and time decomposition.

• DADP works well with the crude relaxation Y = 0,

and even beats SDDP if nbin ≥ 2.

• We had a lot of troubles to deal with approximate gradients!

Perspectives

• Find a proper information process Y.

• Improve the integration between SDDP and DADP.

• Test other decomposition schemes (by quantity, by prediction).
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En préparation, Springer, 2016.

P. Girardeau.
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Dams trajectory
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SGD convergence

Plotting the convergence with T = 52 and nbin = 2.
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ADMM convergence

Plotting the logarithm of the norm of the primal residual with T = 52

and nbin = 5.
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