
Streamlining nonlinear programming on GPUs:
towards a vectorized modeler?

JuMP-dev 2022

François Pacaud Michel Schanen

Mathematics and Computer Science Division (MCS)
Argonne National Laboratory

July, 2022



Of Julia, automatic differentation and nonlinear programming

min
x∈Rn

f (x)

subject to g(x) ≤ 0

Requirements
• Fast evaluations of gradient ∇f and

(sparse) Jacobian ∇g
• Fast evaluation of (sparse) Hessian

W = ∇2f (x) +
∑

i

yi ∇2g(x)

• Automatic differentation is a good
match for nonlinear programming
(Griewank!)

• Mature packages:
AMPL, GAMS, JuMP.jl

2 of 15
.



Benchmark: the optimal power flow problem

Why is the NLP community obsessed with OPF?
• Problem is (super) sparse, large-scale

+ Require second-order derivatives and coloring
• Established benchmarks available (MATPOWER, pglib-opf)

+ Recent ARPAE-GO competition
• Good proxy problem for various problems in engineering

Recent initiative to benchmark various AD backends: rosetta-opf

Figure: OPF has a nice graph structure
G = (V, E)!

Simplified OPF (polar form)

min
v,θ,pg ,qg

∑
g

cg (pg )

subject to pi
g − pi

d =
∑

(i,j)∈E

pij (v , θ) ∀i ∈ V

qi
g − qi

d =
∑

(i,j)∈E

qij (v , θ) ∀i ∈ V

3 of 15
.



Implementing the OPF in JuMP (1)

Looking at rosetta-opf’s code:
1. Step 1: Define the 4nℓ nonlinear branch flows, for each branch:

2. Step 2: Define the 2nb linear balance equations, at each bus:

Observation
By design JuMP manipulates scalar expressions

4 of 15
.



Implementing the OPF in JuMP (2)
As a result JuMP1 outputs 4nℓ expression trees:

Observation
Parallelization can happen only at the outer level!

For instance, if we look at SymbolicAD.jl’s code:

We evaluate each constraint in parallel using multithreading
What if we can evaluate all the constraints in one block instead?

1with the MOI.Nonlinear backend

5 of 15
.



Vectorizing the optimal power flow by manipulating vector expressions
Nonlinear basis (Lee et al., 2020)
We define the nonlinear basis

ψ(v , θ) =

[
ψC

ℓ (v , θ)
ψS

ℓ (v , θ)
ψk(v , θ)

]
∈ R2nℓ+nb

with
ψC

ℓ (v , θ) = v f v t cos(θf − θt) ∀ℓ = 1, · · · , nℓ

ψS
ℓ (v , θ) = v f v t sin(θf − θt) ∀ℓ = 1, · · · , nℓ

ψk(v , θ) = v2
k ∀k = 1, · · · , nb

Once the nonlinearities factorized in ψ, we recover the different expressions
with sparse matrix-vector operations (SpMV)

Vectorized model
The power flow constraints rewrite[

Cg pg − pd
Cg qg − qd

]
+

[
−Ĝc −B̂s −Gd

B̂c −Ĝs Bd

]
︸ ︷︷ ︸

Meq

ψ(v , θ) = 0

6 of 15
.



Evaluating the power flow model on the GPU

Figure: KernelAbstractions kernel

As a shorthand, we write
g(v , θ) = Meqψ(v , θ).

Evaluation
1. We first evaluate the basis ψ(v , θ)

✓ SIMD parallelism
✓ Implemented with

KernelAbstractions for
portability purpose

2. Then we recover the function g with
one matrix operation (SpMV)
✓ We leverage cusparse to deal with

the sparsity

The model runs entirely on the GPU!

7 of 15
.



Porting the forward pass on the GPU

Forward-mode automatic differentation
✓ We can evaluate the Jacobian-product (∇x g)d using ForwardDiff.jl

→ ForwardDiff.jl is GPU-compatible (Revels et al., 2018)

✓ Exploit sparsity and use coloring to reduce the total number of Jacobian-product
x Yet, sparsity detection is not automatic (we use MATPOWER’s expression)

Figure: Matrix compression using coloring

Figure: Memory representation of
ForwardDiff.Dual{Nothing, Float64, 3}
(Julia is column-oriented)

Linear algebra trick: if d ∈ Dn
p is a vector of dual numbers with p partials,

evaluate Meqd in two steps:
1. Reinterpret d as a real-valued matrix D ∈ R(p+1)×n

2. Evaluate Meq D with a SpMM operation (parallelize well if Meq is CSR)

8 of 15
.



Porting the reverse pass on the GPU

Observations
• Implementing a parallel reverse pass is nontrial

(every read becomes a write, leading to race condition)

• Scarce support of reverse-mode for nonlinear programming
(we have hope in Enzyme, but not ready yet)

Our solution exploits the vectorized model:
• We have implemented manually a kernel to evaluate the adjoint (∇ψ)⊤

• Then recover the adjoint of the power-flow with linear algebra operations:

(∇g)⊤y = (∇ψ)⊤Meq
⊤y

Hessian evaluation
• We exploit the hand-coded adjoint and evaluate each Hessian-vector product with

a forward-over-reverse pass (require the adjoint to be compatible with ForwardDiff.jl)

• Again, we use coloring and evaluate the full Hessian with one Hessian-vector
product Hv

• Exploit the same linear algebra trick as in the forward pass
(except M⊤

eq Y is a CSC SpMM, requiring atomic)

9 of 15
.



Result #1: time to evaluate Hessian
Case nv ne p = ncolors
IEEE118 118 186 27
IEEE300 300 411 24
PEGASE1354 1,354 1,991 28
PEGASE2869 2,869 4,582 35
PEGASE9241 9,241 16,049 85
ACTIVSg25K 25,000 32,230 36

Table: Benchmark cases from MATPOWER

Using JuMP’s ReverseAD backend as a reference:

case118 case300 case1354 case2869 case9241 case25K

10 1

100

R
at

io
 / 

Ju
M

P

ExaPF (CPU)
ExaPF (CUDA)

Figure: Ratio/JuMP, comparing CPU code and
CUDA code (log scale)

Case JuMP CPU CUDA
IEEE118 2 2 3
IEEE300 3 5 3
PEGASE1354 19 4 4
PEGASE2869 43 13 6
PEGASE9241 150 145 29
ACTIVSg25K 359 105 35

Table: Results: evaluation time in milliseconds

10 of 15
.



Result #2: time to solve OPF

JuMP (ReverseAD) JuMP (SymbolicAD) Argos
Case #it time (s) #it time(s) #it time (t/it)
1354pegase 41 2.4 41 1.2 40 0.9 (0.02)
2869pegase 40 4.2 40 2.4 50 2.0 (0.04)
9241pegase 70 31.3 70 20.8 69 10.7 (0.16)
ACTIVSg10k 109 36.8 109 22.5 76 7.9 (0.10)
ACTIVSg25k 102 100.5 102 61.4 86 24.7 (0.29)
ACTIVSg70k 101 313.0 108 238.8 90 89.8 (1.00)

Setup
• Solve OPF with MadNLP (filter line-search interior-point)
• Solve KKT system with HSL MA27

• JuMP uses formulation in rosetta-opf
- ReverseAD: classical AD with custom reverse pass
- SymbolicAD: uses SymbolicAD.jl

• Argos uses a custom formulation (with some variables removed)
• Comparison is only indicative!

- Only a 2x time speed-up when using the GPU...
- Argos is a prototype, nowhere near PowerModels’ robustness

11 of 15
.



Extension to stochastic optimal power flow

Suppose we have N uncertainties
ξ1, · · · , ξN

Stochastic OPF

min
x1,··· ,xN

1
N

∑
i

f (xi , ξi )

subject to (x1, · · · , xN) ∈ C

xi = (vi , θi , pi
g , qi

g )
g(xi , ξi ) = 0 ∀i = 1, · · · ,N

C is the coupling set (generally porting on active power generations)

• The stochastic OPF requires to evaluate in parallel the parameterized functions

g(x1, ξ1), · · · , g(xN , ξN)

• Direct to parallelize on the GPU!
(in fact that’s how we have designed the KA kernel)

12 of 15
.



Evaluating a nonlinear model at Exascale

Exascale architecture
• GPU-centric: One node has 6 or 8 GPUs
• Fast communication between GPUs (unified memory)
• Setup favorable for MPI-CUDA (nicely supported by Julia)

tl;dr: Reimplementing StructJuMP.jl at Exascale:
• Dispatch the evaluation of the derivatives on N GPUs
• Assemble the resulting KKT system with a Schur-complement approach

(ala PIPS)

13 of 15
.



Scaling results
Experiment 1

• Run Argos on one GPU, solving the KKT system on the GPU with Schur-complement
approach

• Compare with JuMP, KKT system solved with MA27

JuMP (ReverseAD) JuMP (SymbolicAD) Argos (1 GPU)
Case N AD (s) tot (s) AD (s) time(s) AD (s) tot (s)
1354pegase 10 4.6 7.6 1.2 3.0 0.2 1.9
1354pegase 30 15.2 32.1 3.2 9.4 0.5 10.3
1354pegase 60 30.4 72.1 7.5 29.6 1.0 34.0
9241pegase 10 41.6 109.2 9.0 43.4 3.8 68.2
9241pegase 30 / / 52.7 284.2 10.8 411.9

Table: Comparing against JuMP (CPU)

Experiment 1
Dispatch the resolution on 2 GPUs

Argos (1 GPU) Argos (2 GPU)
Case N AD (s) time(s) AD (s) tot (s)
1354pegase 10 0.2 1.9 0.2 1.1
1354pegase 30 0.5 10.3 0.3 3.7
1354pegase 60 1.0 34.0 0.5 10.7
9241pegase 10 3.8 68.2 2.1 27.7
9241pegase 30 10.8 411.9 5.6 130.4

14 of 15
.



Next steps?

Take away message
It’s hard to beat state-of-the-art! (even when using GPUs)

We believe that a vectorized modeler is the way to go to exploit emerging SIMD
architectures (GPU, cerebras,...)

(v , θ) ⇝ ψ(v , θ) ⇝ Meqψ(v , θ)

How to implement a vectorized modeler?
• The user implements custom functions, and possibly provides their adjoints

- Integrate differentation rules with ChainRulesCores.jl
- In the future, we hope we can extract the adjoint of any kernels with Enzyme

• Revisit JuMP’s AST to manipulate vectorized expressions
- Towards an AbstractExpressionTree in MOI.Nonlinear?

15 of 15
.



References I

Lee, D., Turitsyn, K., Molzahn, D. K., and Roald, L. A. (2020). Feasible path identification in optimal power flow with sequential convex
restriction. IEEE Transactions on Power Systems, 35(5):3648–3659.

Revels, J., Besard, T., Churavy, V., De Sutter, B., and Vielma, J. P. (2018). Dynamic automatic differentiation of gpu broadcast kernels.
arXiv preprint arXiv:1810.08297.


	References

