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Who are we?

We are a team of enthusiastic computational mathematicians at Argonne National Lab

ExaSGD project
• Optimizing Stochastic Grid Dynamics
at ExaScale

• Leverage new GPU-centric HPC architectures

Question: How to solve optimal power flow problems at exascale?
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Solving Optimal Power Flow on GPU is easy, huh?

• Graphs are the natural abstraction for power
networks, but come with unstructured sparsity

• OPF formulate as large-scale nonlinear
nonconvex optimization problems

But ... Large-scale optimization solvers rely on sparse solvers!
State-of-the-art for OPF: Interior-Point Method (IPM)

- Newton method with very ill-conditioned linear systems
- Efficient IPM requires indefinite sparse direct inertia revealing solvers
(HSL, Pardiso)...

- Sparse linear libraries on GPU are not mature (yet!) (Tasseff et al., 2019)
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Back to the future: Revisiting reduced space method for OPF

A brief (and partial) history of the resolution of OPF (nonlinear optimization only)

• 1962: introduction of the OPF
problem by Carpentier
• 1968: Reduced Gradient method
Dommel and Tinney (1968)
• 1972: Generalized Reduced Gradient
Peschon et al. (1972)
• 1982: SQP method for OPF
Burchett et al. (1982)
• 1984: OPF by Newton approach
Sun et al. (1984)
• 1994: Primal-Dual Interior-Point
Granville (1994)
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Formulating the OPF problem

We adopt the polar formulation
• Variables

z = (v , θ, pg , qg ) ∈ R2×(nb+ng )

- Voltage magnitudes v ∈ Rnb

- Voltage angles θ ∈ Rnb

- Active power generations pg ∈ Rng

- Reactive power generations qg ∈ Rng

• Objective
- Minimize costs of power generations

F (z) =

ng∑
g=1

cg2 p
2
g + cg1 pg

• Constraints
• Bounds z[ ≤ z ≤ z]

z ∈ Z
• Power-flow equality constraints

G(z) = 0
• Line-flow inequality constraints

H(z) ≤ 0

Original OPF

min
z∈Z

F (z)

subject to G(z) = 0
H(z) ≤ 0

(OPF)

Physically-constrained OPF
We reorder z = (x, u) with
• a state x = (θpv , θpq , vpq)

• a control u = (v ref , vpv , ppvg )
and consider the equivalent formulation

min
x,u

F (x, u)

subject to x ∈ X , u ∈ U
G(x, u) = 0
H(x, u) ≤ 0

(1)
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Our plan of action

Figure: Dommel and Tinney (1968)

We port on GPUs the reduced space method of
Dommel and Tinney (1968) (revisited recently in
Kardos et al. (2020))

Two steps:
1. Projection on the reduced space

• Implementation of a differentiable
power flow solver on GPU

• Evaluation of the reduced Hessian in batch
2. Resolution in the reduced space

• Penalty methods of Dommel and Tinney (1968),
revisited with an Augmented Lagrangian
algorithm

• Dense KKT system solved directly on the GPU,
using a Schur complement approach
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Outline

Projection

Resolution
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Projecting the problem into the power flow manifold
• Remember that the power flow equality constraints write G(x, u) = 0
• If ∇xG is non-singular, then Implicit Function theorem applies:
For each u, there exists a local function x(u) such that

G(x(u), u) = 0

• Numerically, the nonlinear equation is inverted with Newton-Raphson

Reduced problem
Let f (u) := F (x(u), u) and h(u) := H(x(u), u). Problem (OPF) is equivalent to

min
u

f (u) s.t. h(u) ≤ 0 , x(u) ∈ X , u ∈ U

Reduced gradient
If F : Rnx × Rnu → R is a differentiable function,
then the function f (u) := F (x(u), u) is differentiable, with

∇f (u) = ∇uF︸︷︷︸
nu

+ (∇uG︸︷︷︸
nx×nu

)> λ︸︷︷︸
nx

with (∇xG︸︷︷︸
nx×nx

)>λ = −∇xF︸︷︷︸
nx

The vector λ ∈ Rnx is the first-order adjoint
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Reduced Hessian: dense, dense, dense!

X X =

n

n

m

Can we extract second-order information
as well? Yes!
• We derive two first-order adjoints ψ
and z, using the adjoint-adjoint
method (Wang et al., 1992)
• Involve only Hessian-vector products!
• Reduced Hessian ∇2f is dense
(dimension nu × nu)

Reduced Hessian
Let w ∈ Rnu be a vector and Ĝ the first-order residual:

Ĝ(x, u,λ) := ∇xF (x, u) +∇xG(x, u)>λ (≈ 0)

The Hessian-vector product (∇2f )w is equal to

(∇2f )w = (∇2
uuF ) w + λ>(∇2

uuG) w + (∇uG)>ψ + (∇2
uxF )>z + λ>(∇2

uxG)>z

with the second-order adjoints (z,ψ) solutions of the two sparse linear systems{
(∇xG) z = −(∇uG) w

(∇xG)>ψ = −(∇uĜ)w − (∇x Ĝ)z ,
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Computing the reduced Hessian on the GPU

Parallel computation
X We evaluate the Hessian-vector products (∇2f )w in batch
X Callbacks for ∇2F and ∇2G evaluated using Forward-over-Reverse Autodiff,

(batch automatic differentiation implemented on GPU)
X Sparse linear systems solved in batch with cusolverRF

Results on case9241pegase:

i) Reduced space: CPU versus GPU
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ii) Reduced space versus full space

lib device space time
AMPL CPU full space 130ms
ExaPF GPU reduced space 350ms

Table: Time to evaluate the Hessian of the
Lagrangian
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Augmented Lagrangian formulation

Where are we?
In the reduced space, the OPF writes as a nonlinear problem

min
u≥0

f (u) s.t. c(u) ≤ 0

with
• Bound constraints u ≥ 0
• Inequality constraints c(u) ≤ 0

(the functional c : Rnu → Rm concatenates the line constraints h(u) ≤ 0 and the state constraints x(u) ∈ X

to get a problem in standard form)

• Amenable to resolution with interior-point? But...
Jacobian ∇c(u) → m linear systems ; Hessian ∇2c(u) → 2m× n linear systems...
• Dommel and Tinney (1968) used quadratic penalties in their resolution algorithm!

Smooth Augmented Lagrangian formulation
Let s ∈ Rm a slack variable, ρk > 0 a penalty, and a multiplier yk ∈ Rm.

min
u≥0,s≥0

Lρ(u, s; yk) := f (u) + 〈yk , c(u)− s〉+
ρk

2
‖c(u)− s‖2
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Resolution of the Augmented Lagrangian subproblems

x Active set methods not amenable to GPUs (expensive reordering)
X Use Interior-point method (IPM) instead! (even if poor warm-starting...)

IPM-Augmented Lagrangian formulation

min
u,s

ψµ(u, s, yk) := Lρ(u, s; yk)− µ
nu∑
i=1

log(ui )− µ
m∑
i=1

log(si ) (IPM-EqAugLag)

Denote by v := (u, s) the primal variable,
and z the dual variable associated to bound-constraints v ≥ 0
We get the primal-dual equations (see Nocedal and Wright (2006)):{

∇Lρ(v ; yk)− z = 0
VZe − µe = 0

=⇒
[
∇2Lρ −I

Z V

] [
dv
d z

]
= −

[
∇Lρ(v ; yk)− z

VZe − µe

]
simplifies as

[
∇2Lρ + Σ

]
dv = −∇vψµ(v ; yk) with Σ = V−1Z diagonal matrix

But...still, matrix ∇2Lρ has size (nu + m)× (nu + m)...
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Solving the KKT system with a Schur complement approach

Looking more closely at the Hessian ∇2Lρ

∇2Lρ =
[
Huu + ρA>u Au −ρA>u
−ρAu ρI

]
∈ R(nu+m)×(nu+m)

• reduced Hessian (dense) Huu = ∇2f (u) +
∑m

i=1 yi∇
2h(u)

• and reduced Jacobian (dense) Au = ∇h(u)

Theorem
Let dv = (du , d s) and gv = (gu , g s).
The Newton-step

[
∇2Lρ + Σ

]
dv = −gv is equivalent to[

Suu 0
−ρAu Σs + ρI

] [
du
d s

]
=
[
−gu + ρA>u [Σs + ρI]−1g s

−g s

]
with Suu the Schur-complement matrix of

[
∇2Lρ + Σ

]
:

Suu = Huu + Σu + A>u
[
ρ− ρ2[Σs + ρI]−1

]
Au

Now, it remains just to factorize Suu (with size nu × nu)!
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Numerical results

Numerical settings
• Algorithm implemented inside the MadNLP solver (Shin et al., 2020)
• IPM warmstarted following (Ma et al., 2021)
• Reduced Hessian evaluated using the projection algorithm we presented before
• In practice, dense matrix Suu is factorized on the GPU with
a Bunch-Kaufman factorization (as implemented in cuSOLVER)

• Total running time: 160s
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Conclusion

Thanks for listening!

• Achievements
• We have revisited the reduced gradient method of Dommel and Tinney,

with second-order information
• We have developed a custom Augmented Lagrangian algorithm,

and exploited the structure of the KKT system

• Perspectives
• Prove formally the convergence of the algorithm
• Adapt the algorithm to a real-time optimization setting

Slides available at: https://frapac.github.io/pdf/INFORMS_2021.pdf

16 of 16
.

https://frapac.github.io/pdf/INFORMS_2021.pdf


References I

Burchett, R., Happ, H., and Wirgau, K. (1982). Large scale optimal power flow. IEEE Transactions on Power Apparatus and Systems,
(10):3722–3732.

Dommel, H. and Tinney, W. (1968). Optimal Power Flow Solutions. IEEE Transactions on Power Apparatus and Systems,
PAS-87(10):1866–1876.

Granville, S. (1994). Optimal reactive dispatch through interior point methods. IEEE Transactions on power systems, 9(1):136–146.

Kardos, J., Kourounis, D., and Schenk, O. (2020). Reduced-space interior point methods in power grid problems. arXiv preprint
arXiv:2001.10815.

Ma, D., Orban, D., and Saunders, M. A. (2021). A julia implementation of algorithm ncl for constrained optimization. arXiv preprint
arXiv:2101.02164.

Nocedal, J. and Wright, S. J. (2006). Numerical optimization. Springer series in operations research. Springer, New York, 2nd ed edition.
OCLC: ocm68629100.

Peschon, J., Bree, D. W., and Hajdu, L. P. (1972). Optimal power-flow solutions for power system planning. Proceedings of the IEEE,
60(1):64–70.

Shin, S., Coffrin, C., Sundar, K., and Zavala, V. M. (2020). Graph-based modeling and decomposition of energy infrastructures. arXiv
preprint arXiv:2010.02404.

Sun, D. I., Ashley, B., Brewer, B., Hughes, A., and Tinney, W. F. (1984). Optimal power flow by newton approach. IEEE Transactions on
Power Apparatus and systems, (10):2864–2880.

Tasseff, B., Coffrin, C., Wächter, A., and Laird, C. (2019). Exploring benefits of linear solver parallelism on modern nonlinear optimization
applications. arXiv preprint arXiv:1909.08104.

Wang, Z., Navon, I. M., Le Dimet, F.-X., and Zou, X. (1992). The second order adjoint analysis: theory and applications. Meteorology
and atmospheric physics, 50(1):3–20.


	Projection
	Resolution
	References

