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Who are we?

We are a team of enthusiastic computational mathematicians at Argonne National Lab

ECP
\(\:}mq ExaSGD project

® Optimizing Stochastic Grid Dynamics
at ExaScale

® Leverage new GPU-centric HPC architectures

Question: How to solve optimal power flow problems at exascale?
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N
Solving Optimal Power Flow on GPU is easy, huh?

® Graphs are the natural abstraction for power
networks, but come with unstructured sparsity

® OPF formulate as large-scale nonlinear
nonconvex optimization problems
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 —
Solving Optimal Power Flow on GPU is easy, huh?

® Graphs are the natural abstraction for power
networks, but come with unstructured sparsity

® OPF formulate as large-scale nonlinear
nonconvex optimization problems

But ... Large-scale optimization solvers rely on sparse solvers!

State-of-the-art for OPF: Interior-Point Method (IPM)
- Newton method with very ill-conditioned linear systems

- Efficient IPM requires indefinite sparse direct inertia revealing solvers
(HSL, Pardiso)...
- Sparse linear libraries on GPU are not mature (yet!) (Tasseff et al., 2019)
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S —
Back to the future: Revisiting reduced space method for OPF

A brief (and partial) history of the resolution of OPF (nonlinear optimization only)

Optimal Power Flow Solucions ® 1962: introduction of the OPF

HERMANN W. DOMMEL, ssunss, 1555, axp WILLIAM F. TINNEY, Sexion sssnss, 1555

problem by Carpentier
® 1968: Reduced Gradient method

Dommel and Tinney (1968)
® 1972: Generalized Reduced Gradient
. I Peschon et al. (1972)
o - ® 1982: SQP method for OPF
m B Tt o A e VRS 08 ek Burchett et al. (1982)

Large Scale Optimal Power Flow
® 1984: OPF by Newton approach

Sun et al. (1984)

® 1994: Primal-Dual Interior-Point
Granville (1994)

IEEE Transacion on Power Apparaas and Sysiems, Vol. PAS-103, No. 10, Ociober 1984

OPTIMAL POVER FLO Y NEVTON APPROACH

RC. Burchett  H.H. Happ KA. Wirgau
fellow  senio

Electric Company
Schenectady, New York

Abstract
1500
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Formulating the OPF problem

We adopt the polar formulation

® Variables
z=(v,0,p,,q,) € R?*(nFne)

- Voltage magnitudes v € R"b
- Voltage angles 6 € R"

- Active power generations p, € R"¢
- Reactive power generations q, € R"

® Objective

- Minimize costs of power generations

g
Fa)= Y el chn
g=1
® Constraints
® Bounds z° <z< z*

zc 2
® Power-flow equality constraints
G(z)=0
® Line-flow inequality constraints

H(z) <0

Original OPF
min F(z)
zeZ
subject to  G(z) = 0 (OPF)
H(z) < 0

Physically-constrained OPF

We reorder z = (x, u) with
® astate x = (6PY, 0P9, vP9)

® acontrol u = (v, vPY, pgv)
and consider the equivalent formulation

min F(x, u)
x,u

subjectto x € X, ue U (1)
G(x,u) =0
H(x,u) <0



Our plan of action

We port on GPUs the reduced space method of
The H!sslrlll matrix in (53) is extremely difficult to tumpnurl'bf Dommel and Tlnney (1968) (reVISIted recently n
o on B mvoto thrc il arrage 5. i Kardos et al. (2020))

- [2]-or 2]

where (a%/ax%] is a three-dimensional matrix. This in itself is not T +
the main obstacle, however, since these three-dimensional matrices .
are very sparse. This sparsity could probably be increased by WO steps:
rewriting the power flow equations in the form

1. Projection on the reduced space

¥
Pers = Quem
2 o b eVt = TS5 = 0 ® |mplementation of a differentiable
nd Lyi Ni ¥ thod i d and i i
Vith ectangalar, intead of polr, conrdimates. Then most of the power flow solver on GPU
fi derivati vould be 1 i, , th Ve . . .
oo vt wonld vsoma. The commatationat dimcator e ® Evaluation of the reduced Hessian in batch
the sensitivity matrix [S]. To see the implications for the realistic
tem of Fig. 6 with 328 nodes, let 30 of the 80 control paramet H H
e voltage magnitadc, and 30 be srandiorme tap scttings. Then the 2. Resolution in the reduced space
sensitivity matrix would have 48 400 entries [605 X 80, where 605 .
reflects 327 P-cquations (2) and 328 — 50 Q-equations (3)], which is ® Penalty methods of Dommel and Tinney (1968),
far beyond the capability of our present computer, Aside from the . . . .
revisited with an Augmented Lagrangian
Figure: Dommel and Tinney (1968) algorithm

Dense KKT system solved directly on the GPU,
using a Schur complement approach
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Outline

Projection
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Projecting the problem into the power flow manifold

® Remember that the power flow equality constraints write G(x, u) =0

® |f V.G is non-singular, then Implicit Function theorem applies:
For each u, there exists a local function x(u) such that

Glx(u),u) =0
® Numerically, the nonlinear equation is inverted with Newton-Raphson
Reduced problem
Let f(u) := F(x(u), u) and h(u) := H(x(u), u). Problem (OPF) is equivalent to

min f(u) st. h(u) <0, x(u)eX, weld
u

Reduced gradient

If F:R"™ x R™ — R is a differentiable function,
then the function f(u) := F(x(u), u) is differentiable, with

Vf(u)= V,F + (V.G)T A ith (VxG)TA=—VLF
(u) u (VuG) R , Wi ( ) x
ny Ny X ny nx Nx X Ny nx

The vector A € R™ s the first-order adjoint
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N
Reduced Hessian: dense, dense, dense!

Can we extract second-order information
=" as well? Yes!

@ ® We derive two first-order adjoints 1»
X

X _ and z, using the adjoint-adjoint
method (Wang et al., 1992)

n / ® Involve only Hessian-vector products!
n

— ® Reduced Hessian V2f is dense
(dimension ny, X ny)

Reduced Hessian

Let w € R™ be a vector and G the first-order residual:

a(x, u,A) = Vi F(x,u) 4+ ViG(x,u) T A (=~ 0)
The Hessian-vector product (V2f)w is equal to
(V2w = (ViuF) w+ AT (Vi G) w+ (VuG) "o + (Vi F) T 2+ AT(VixG) ' 2

with the second-order adjoints (z, ) solutions of the two sparse linear systems

{ (VxG) z=—(V.G)w
(ViG)Tp = —(VuG)w — (VxG)z,
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Computing the reduced Hessian on the GPU

Parallel computation

v We evaluate the Hessian-vector products (V2f)w in batch

v Callbacks for V2F and V2G evaluated using Forward-over-Reverse Autodiff,
(batch automatic differentiation implemented on GPU)

V' Sparse linear systems solved in batch with cusolverRF

Results on case9241pegase:

i) Reduced space: CPU versus GPU

............................. Time CPU
= Forward solve
= AutoDiff

. = Backward solve

Time / Hessian-vector product (ms)

4 8 16 32 64
Batch size N

i) Reduced space versus full space

lib device  space time
AMPL CPU full space 130ms
ExaPF  GPU reduced space  350ms

Table: Time to evaluate the Hessian of the
Lagrangian
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Outline

Resolution
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.\ _________________________________________
Augmented Lagrangian formulation

In the reduced space, the OPF writes as a nonlinear problem
min f(u) st. c(u) <0
min £(u) st c(u) <

with

® Bound constraints u > 0

® Inequality constraints c(u) < 0

(the functional ¢ : R"t — R™ concatenates the line constraints h(u) < 0 and the state constraints x(u) € X’

to get a problem in standard form)

® Amenable to resolution with interior-point? But...
Jacobian Vc(u) — m linear systems ; Hessian V2c(u) — 2m x n linear systems...

® Dommel and Tinney (1968) used quadratic penalties in their resolution algorithm!

Smooth Augmented Lagrangian formulation

Let s € R™ a slack variable, p¥ > 0 a penalty, and a multiplier y* € R™.

K
i L Y= s = 2 —s|?
min Ly (i) = Fu) + 0 () = ) + Zlic(w) ~ 5|
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Resolution of the Augmented Lagrangian subproblems

x Active set methods not amenable to GPUs (expensive reordering)

V" Use Interior-point method (IPM) instead! (even if poor warm-starting...)

IPM-Augmented Lagrangian formulation
ny m
min Yu(u,s,y") = Lo(u,s;5%) — MZ log(ui) — MZIOg(Si) (IPM-EqAuglag)
i=1 i=1

Denote by v := (u, s) the primal variable,
and z the dual variable associated to bound-constraints v > 0
We get the primal-dual equations (see Nocedal and Wright (2006)):

VLp(v;yk)_z:O . Vsz —1 [dy _ VLp(V;yk)—z
VZe — ue =0 Z V||d; VZe — ne

simplifies as [Vsz + ):] d, =~V (v;y¥) with ¥ = V=17 diagonal matrix

But...still, matrix V2L, has size (ny, + m) x (ny, + m)...
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A
Solving the KKT system with a Schur complement approach

Looking more closely at the Hessian V2Lp

V2L, = Hyy + PA(TAU _PAI c R(nu+m)><(nu+m)
° —pAy pl

® reduced Hessian (dense) Hu, = V2f(u) + 27;1 yiV2h(u)

® and reduced Jacobian (dense) A, = Vh(u)

Theorem

Let dv = (du» dS) and 8, = (gwgs)-
The Newton-step [VZL,, aF Z] d, = —g, is equivalent to

[ suu 0 ] [du] — [_gu + pAI[ZS + pl]_lgs]
—pAu s+ pl] | ds —8s

with S, the Schur-complement matrix of [V2 L, + Z] :

Suu = Huyy + 0o + A:,r [P - Pz[zs + PI]_l] Ay

Now, it remains just to factorize Sy, (with size n, x ny)!
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Numerical results

Numerical settings

® Algorithm implemented inside the MadNLP solver (Shin et al., 2020)
® |PM warmstarted following (Ma et al., 2021)
® Reduced Hessian evaluated using the projection algorithm we presented before

® |n practice, dense matrix S, is factorized on the GPU with
a Bunch-Kaufman factorization (as implemented in cuSOLVER)

10t
1
10 10-1
o R
10 & 107
y <
2 S
& 107 g 10
g g
g H
v
8 102 2 0
% —— Power flow
s & ool —— Voltage magnitude
10 —— Active power gen.
—— Primal feas. —— Reactive power gen.
10-¢] — Dual feas. 207 Line flow
o 20 40 60 80 100 120 o 20 40 60 80 100 120
# Auglag inner iterations # Auglag inner iterations

® Total running time: 160s
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Conclusion

Thanks for listening!

® Achievements

® We have revisited the reduced gradient method of Dommel and Tinney,
with second-order information

® We have developed a custom Augmented Lagrangian algorithm,
and exploited the structure of the KKT system

® Perspectives

® Prove formally the convergence of the algorithm
® Adapt the algorithm to a real-time optimization setting

Slides available at: https://frapac.github.io/pdf/INFORMS_2021.pdf
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