
Reduced-space Interior-Point Method:
A GPU accelerated Comeback

François Pacaud Sungho Shin Michel Schanen Daniel Adrian Maldonado
Mihai Anitescu

ICCOPT 2022



Motivation: solving optimal power flow problems on GPU architectures
Our research is funded by the Exascale Computing Project (ECP)

Exascale challenge
Handling unstructured sparsity on SIMD architectures is non trivial

Hardware
GPU centric (SIMD)

Physical model
unstructured

2 of 14
.



Why GPUs are hard for optimizers?

Observation
• GPUs are SIMD architecture (single instruction, multiple data)
• Excellent for dense and batch operations

On their hand, numerical optimization algorithms depend on two key routines
1. Derivatives: Explicit derivatives, Finite Differences, Automatic Differentiation
2. Linear solve: Solve KKT system to compute descent direction

(∇2
xx ℓk)dk = −∇x ℓk

where (∇2
xx ℓk) is sparse symmetric indefinite

(from (Tasseff et al., 2019))

• No good sparse symmetric indefinite solver on GPU
• Usual workarounds:

1. Use decomposition algorithms
(ADMM, Kim et al. (2021))

2. Use iterative solver (CG-based)
(Cao et al., 2016; Schubiger et al., 2020)

3 of 14
.



Our solution: densification

Idea: Exploit the available degrees of freedom
Densify the problem using the reduced Hessian

Ĥuu = Z⊤HZ

• Approach widely used during the 1980s/1990s
- Summarized in (Fletcher, 1987, Section 12.5): "Nonlinear elimination and feasible

direction methods"
• Also known as "Projected Hessian" (Nocedal and Overton, 1985; Gurwitz and Overton,

1989)
- The reduced Hessian Ĥuu is often approximated (Biegler et al., 1995)

• The optimization community moved away from this technique in the 2000s:
- "Many degrees of freedom" approaches (Poku et al., 2004)
- Efficient resolution with interior-point combined

with generic indefenite sparse linear solver
(HSL (Duff and Reid, 1983), Pardiso (Schenk and Gärtner, 2004))

- Lead to the development of mature NLP solvers (Wächter and Biegler, 2006; Waltz
et al., 2006)

4 of 14
.



Take-home messages
1. We parallelize the evaluation of the reduced Hessian Ĥuu on the GPU
2. We exploit the reduced Hessian inside an interior-point method
3. Performance of the method depends on available degrees of freedom

(the less, the better), but tractable overall

We applied this method to solve the OPF problem on GPU (Pacaud et al., 2022):

IPM + Full-space Hessian (CPU) IPM + Reduced Hessian (GPU)
9241pegase (many DOF) 10.7s 23.7s
9591goc (few DOF) 11.7s 7.7s

5 of 14
.



Magic happens when we exploit the structure

Figure: Nonlinear power flow
(from Hiskens and Davy (2001))

Most real-life nonlinear problems encompasses
a set of physical constraints

g(x, u) = 0

with x a state and u a control

Domain g
Optimal control Dynamics
PDE-constrained optimization PDE
Optimal power flow Power flow

Physically-constrained optimization problem

min
x,u

f (x, u)

s.t. g(x, u) = 0 , h(x, u) ≤ 0

Well-known method (Cervantes et al., 2000; Biros and Ghattas, 2005)

6 of 14
.



Condense step: we remove the inequalities
Notations

• W : Hessian of Lagrangian
• G: Jacobian of equality constraints (power flow)
• A: Jacobian of inequalities (operational constraints)

1323 x 1323

⇓

469 x 469

In interior-point (IPM), the augmented KKT system
(symmetric) writesW + Σp 0 G⊤ A⊤

0 Σs 0 −I
G 0 0 0
A −I 0 0

 pv
ps
pλ
py

 =

r1
r2
r3
r4


We condense by taking the Schur-complement w.r.t. the
inequalities block

Condensed KKT
Let K := W + A⊤ΣsA. The KKT system is equivalent to[

K + Σp G⊤

G 0

] [
pp
pλ

]
=

[
r1 + A⊤(Σs r4 + r2)

r3

]
Usually discarded because of additional fill-in in left-hand-side matrix, but here we are densifying the KKT system

7 of 14
.



Reduce step: we remove the equalities

469 x 469

⇓

107 x 107

Exploiting the structure of g(x, u) = 0:[
Kxx + Σx Kxu G⊤

x
Kux Kuu + Σu G⊤

u
Gx Gu 0

] [
px
pu
pλ

]
=

[
r̂1
r̂2
r̂3

]

Reduced KKT
If the Jacobian Gx is invertible, then the KKT system is
equivalent to

K̂uu pu = r̂2 − GuG−1
x r̂1 − Kux G−1

x r̂3 with K̂uu := Z⊤KZ

where we have defined the reduction operator

Z :=
[

−G−1
x Gu
I

]
• The matrix K̂uu , dense, can be factorized efficiently on the GPU

with dense Cholesky (supposing regularization applied)
• Assembling K̂uu requires only the factorization of the sparse Jacobian Gx

8 of 14
.



Implementing the reduction on the GPU
We suppose given the sparse matrix K = W + A⊤ΣsA

K̂uu =
[

−G−1
x Gu
I

]⊤ [
Kxx Kxu
Kux Kuu

] [
−G−1

x Gu
I

]
We should avoid allocating the sensitivity matrix S = −GuG−1

x (dense, size nx × nu)!
Instead, use batched HessMat product K̂uuV

HessMat kernel: batch adjoint-adjoint reduction
Input: LU factorization, such that PGx Q = L U (2 SpMM, 2 SpSM)
For every RHS V ∈ Rnu×N

1. Solve Z = G−1
x (GuV ) (3 SpMM, 2 SpSM)

2. Evaluate
[

Ψ
Hu

]
=

[
Kxx Kxu
Kux Kuu

] [
Z
V

]
(1 SpMM)

3. Solve Hx = G−⊤
x Ψ (2 SpMM, 2 SpSM)

4. Output K̂uuV = Hu − GuHx (1 SpMM)

• Gx first factorized on the CPU with KLU,
then refactorized entirely on the GPU with cusolverRF (fast)

• div(nu , N) + 1 HessMat products required to get full K̂uu

9 of 14
.



Performance of the reduction algorithm

Message: 7 seconds to reduce the matrix for the largest instance (ACTIVSg70k)

23 25 27 29

Batch size N

10 3

10 2

10 1

100

101

Ti
m

e 
[s

]
Scaling of reduction algorithm

case118.m
case300.m
case_ACTIVSg500.m
case1354pegase.m
case_ACTIVSg2000.m
case2869pegase.m
case9241pegase.m
case_ACTIVSg10k.m
case13659pegase.m
case_ACTIVSg25k.m
case_ACTIVSg70k.m

10 of 14
.



MadNLP: a GPU-ready IPM solver

MadNLP (Shin et al., 2020)
• Filter line-search interior-point method
• Implemented purely in Julia
• Open-source:

https://github.com/MadNLP/MadNLP.jl

• Derivatives:
- Custom automatic-differentation backend: ExaPF.jl
- Derivatives evaluated in parallel on the GPU

• Linear solve: We compare two equivalent alternatives to solve the KKT system
1. The reference: HSL MA27 running on the CPU
2. The contender: our reduction algorithm, using cusolver to factorize the reduced

matrix with dense Cholesky on the GPU

11 of 14
.

https://github.com/MadNLP/MadNLP.jl


Coming back to the OPF problem

Observation
The smaller the number of degrees of freedom nu , the more efficient is the reduction
of the KKT system

The reference The contender
MadNLP+MA27 MadNLP+reduced KKT

Case DOF #it Time (s) MA27 (s) #it Time (s) Chol. (s) Reduction (s)
Many degrees of freedom

9241pegase 0.14 69 10.6 6.1 69 23.7 1.2 16.2
ACTIVSg25k 0.10 86 24.7 16.9 86 85.0 4.3 68.1
ACTIVSg70k 0.08 90† 89.8 65.7 85† 658.2 21.5 606.5

Few degrees of freedom
9591goc 0.02 43 11.7 10.4 43 7.7 2.1 1.6
10480goc 0.03 50 14.0 12.0 50 11.5 3.9 3.3
19402goc 0.02 47 30.8 26.8 47 19.5 4.9 7.2

Legend:
†: algorithm runs into feasibility restoration

12 of 14
.



When is reduced better than full-space?

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Ratio of degrees of freedom

100

101
S

pe
ed

-u
p

ra
tio

LinRed is better

Full-space is better
1354

2000

2869
9241

10000

13659

1048019402

9591

Figure: Breakaven point

13 of 14
.



Extension

Block-structured optimization problem

min
x1,··· ,xN ,u

f (x1, · · · , xN , u)

s.t. g(x i , u) = 0 , h(x i , u) ≤ 0 ∀i = 1, · · · , N

Stochastic optimization, structural design, ...

1917 x 1917

Figure: Block arrowhead Hessian

• Reduction is equivalent to PIPS-NLP’s
Schur-complement approach

• Possible resolution on multiple GPUs
(Frontier, Aurora)

14 of 14
.



References I
Biegler, L. T., Nocedal, J., and Schmid, C. (1995). A reduced Hessian method for large-scale constrained

optimization. SIAM Journal on Optimization, 5(2):314–347.
Biros, G. and Ghattas, O. (2005). Parallel Lagrange–Newton–Krylov–Schur Methods for PDE-Constrained

Optimization. Part I: The Krylov–Schur Solver. SIAM Journal on Scientific Computing, 27(2):687–713.
Cao, Y., Seth, A., and Laird, C. D. (2016). An augmented Lagrangian interior-point approach for large-scale NLP

problems on graphics processing units. Computers & Chemical Engineering, 85:76–83.
Cervantes, A. M., Wächter, A., Tütüncü, R. H., and Biegler, L. T. (2000). A reduced space interior point strategy

for optimization of differential algebraic systems. Computers & Chemical Engineering, 24(1):39–51.
Duff, I. S. and Reid, J. K. (1983). The multifrontal solution of indefinite sparse symmetric linear. ACM

Transactions on Mathematical Software (TOMS), 9(3):302–325.
Fletcher, R. (1987). Practical methods of optimization. John Wiley & Sons.
Gurwitz, C. B. and Overton, M. L. (1989). Sequential quadratic programming methods based on approximating a

projected Hessian matrix. SIAM Journal on Scientific and Statistical Computing, 10(4):631–653.
Hiskens, I. A. and Davy, R. J. (2001). Exploring the power flow solution space boundary. IEEE transactions on

power systems, 16(3):389–395.
Kim, Y., Pacaud, F., Kim, K., and Anitescu, M. (2021). Leveraging gpu batching for scalable nonlinear

programming through massive lagrangian decomposition. arXiv preprint arXiv:2106.14995.
Nocedal, J. and Overton, M. L. (1985). Projected Hessian updating algorithms for nonlinearly constrained

optimization. SIAM Journal on Numerical Analysis, 22(5):821–850.
Pacaud, F., Shin, S., Schanen, M., Maldonado, D. A., and Anitescu, M. (2022). Condensed interior-point methods:

porting reduced-space approaches on gpu hardware. arXiv preprint arXiv:2203.11875.
Poku, M. Y. B., Biegler, L. T., and Kelly, J. D. (2004). Nonlinear optimization with many degrees of freedom in

process engineering. Industrial & engineering chemistry research, 43(21):6803–6812.
Schenk, O. and Gärtner, K. (2004). Solving unsymmetric sparse systems of linear equations with pardiso. Future

Generation Computer Systems, 20(3):475–487.
Schubiger, M., Banjac, G., and Lygeros, J. (2020). GPU acceleration of ADMM for large-scale quadratic

programming. Journal of Parallel and Distributed Computing, 144:55–67.



References II

Shin, S., Coffrin, C., Sundar, K., and Zavala, V. M. (2020). Graph-based modeling and decomposition of energy
infrastructures. arXiv preprint arXiv:2010.02404.

Tasseff, B., Coffrin, C., Wächter, A., and Laird, C. (2019). Exploring benefits of linear solver parallelism on modern
nonlinear optimization applications. arXiv preprint arXiv:1909.08104.

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical Programming, 106(1):25–57.

Waltz, R. A., Morales, J. L., Nocedal, J., and Orban, D. (2006). An interior algorithm for nonlinear optimization
that combines line search and trust region steps. Mathematical Programming, 107(3):391–408.


	References

