GPU-accelerated dynamic nonlinear optimization with ExaModels and MadNLP

François Pacaud Sungho Shin

CAS, Mines Paris - PSL & Chemical Engineering Department - MIT

CDC 2024 December, 18th 2024

Figure: Image source: Wikipedia

Outline: dynamic nonlinear optimization

- 1. We present a tractable method to port the interior-point method on GPU
- 2. We leverage the newly released cuDSS linear solver for optimal performance
- 3. We study the performance of the method on the classical distillation column instance

Context

How to solve a dynamic nonlinear optimization problem?

- 1. Discretize the continuous dynamics
- 2. Formulate the problem in a modeler (casadi, JuMP, AMPL,...)
- 3. Solve it using a nonlinear solver (Ipopt, Knitro,...)

Pioneered by the chemical engineering community:

Fluid Mechanics and Transport Phenomena 🛛 🙃 Full Access

Large-scale DAE optimization using a simultaneous NLP formulation

A. Cervantes, L. T. Biegler

Ind. Eng. Chem. Res. 2004, 43, 6803-6812

6803

Nonlinear Optimization with Many Degrees of Freedom in Process Engineering

Maame Yaa B. Poku and Lorenz T. Biegler* Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15123

Jeffrey D. Kelly Honeywell Industrial Solutions, 300 Yorkland Boulevard, Toronto, Ontario M2J 151, Canada

Example: optimization of a distillation column

$$\min\sum_{t=1}^{N} \left(\gamma(x_{1,t}-\bar{x}_1)^2 + \rho(u_t-\bar{u})^2\right)$$

subject to, for all $t=1,\cdots,N$ and for a fixed time-step $\Delta t:=10/N$,

$$\begin{split} & L_{t} = u_{t}D , \ V_{t} = L_{t} + D , \ S_{t} = F + L_{t} , \\ & y_{n,t} = \frac{\alpha x_{n,t}}{1 + (\alpha - 1)x_{n,t}} , \quad \forall n \in \{1,..,32\} , \\ & \dot{x}_{1,t} = \frac{1}{M_{1}} V_{t}(y_{2,t} - x_{1,t}) \\ & \dot{x}_{n,t} = \frac{1}{M_{n}} \left(L_{t}(x_{n-1,t} - x_{n,t}) - V_{t}(y_{n,t} - y_{n+1,t}) \right) \\ & \forall n \in \{2,..,16\} , \\ & \dot{x}_{17,t} = \frac{1}{M_{17}} \left(Fx_{f} + L_{t}x_{16,t} - S_{t}x_{17,t} - V_{t}(y_{17,t} - y_{18,t}) \right) \\ & \dot{x}_{n,t} = \frac{1}{M_{n}} \left(S_{t}(x_{n-1,t} - x_{n,t}) - V_{t}(y_{n,t} - y_{n+1,t}) \right) \\ & \forall n \in \{18,..,31\} , \\ & \dot{x}_{32,t} = \frac{1}{M_{32}} \left(S_{t}(x_{31,t} - (F - D_{t})x_{32,t} - V_{t}y_{32,t}) \right) \\ & \dot{x}_{n,t} = \frac{1}{\Delta t} \left(x_{n,t} - x_{n,t-1} \right) , \quad \forall n \in \{1,..,32\} , \\ & x_{n,0} = \bar{x}_{n,0} , \ 1 \le u_{t} \le 5 , \end{split}$$

We rewrite the distillation column instance as a nonlinear program

n variables, m inequality constraints, p equality constraints

- Useful framework to solve practical engineering problems
- Usually, we are interested only at finding a local optimum
- Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

We rewrite the distillation column instance as a nonlinear program

n variables, m inequality constraints, p equality constraints

- Useful framework to solve practical engineering problems
- Usually, we are interested only at finding a local optimum
- Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

Interior-point method (IPM)

KKT stationary equations

$$\begin{cases} \nabla f(x) + \nabla g(x)^{\top} y + \nabla h(x)^{\top} z = 0\\ z - \nu = 0\\ g(x) = 0\\ h(x) + s = 0 \\ 0 \le s \perp \nu \ge 0 \end{cases}$$

Rewrite the (nonsmooth) KKT system as a smooth nonlinear system

Dual variables

$$F_{\mu}(x,s; y, z, \nu) := \begin{bmatrix} \nabla f(x) + \nabla g(x)^{\top} y + \nabla h(x)^{\top} z \\ z - \nu \\ g(x) \\ h(x) + s \\ S\nu - \mu e \end{bmatrix} = 0$$

Primal-dual interior-point method

Solve $F_{\mu}(x, s; y, z, \nu) = 0$ using Newton method while driving $\mu \to 0$.

Newton method

At iteration k,

1. Compute Newton step d^k as solution of the linear system

$$abla F_{\mu}(w^k) \ d^k = -F_{\mu}(w^k)$$

2. Update the primal-dual variable $w^k := (x^k, s^k, y^k, z^k, \nu^k)$ as

$$w^{k+1} = w^k + \alpha^k d^k$$

Figure: ∇F_{μ}

Augmented KKT system

After (slight) reformulation, the Newton step writes as

$$\begin{bmatrix} W & 0 & \nabla g^{\top} & \nabla h^{\top} \\ 0 & \Sigma_s & 0 & I \\ \nabla g & 0 & 0 & 0 \\ \nabla h & I & 0 & 0 \end{bmatrix} \begin{bmatrix} d_x \\ d_s \\ d_y \\ d_z \end{bmatrix} = -\begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}$$

with $W = \nabla_{xx}^2 L(\cdot)$, $\Sigma_s = S^{-1} \text{diag}(\nu)$

MadNLP: a structure exploiting interior-point solver Winner of the 2023 COIN-OR cup!

🗱 MadNLP 🐨

MadNLP

- Written in pure Julia
 - Filter line-search (ala lpopt)
 - Flexible & Modular
 - ✓ CUDA-compatible
 - ✓ MPI-compatible
 - ✓ Interfaced with the vectorized modeler ExaModels.jl
 - ✓ And now interfaced with Casadi, thanks to Tommaso Sartor!

1 using MadNLP, MadNLPTests

- 2 model = MadNLPTests.HS15Model()
- 3 solver = MadNLPSolver(model)
- 4 MadNLP.solve!(solver)

Fork on github!

https://github.com/MadNLP/MadNLP.jl/

https://github.com/exanauts/ExaModels.jl

Porting IPM to the GPU

- 1. Fast evaluation of the derivatives using ExaModels.jl
- 2. Fast linear solves using NVIDIA cuDSS

First step: factorable programming with ExaModels.jl

• Large-scale optimization problems almost always have repetitive patterns

$$\min_{x^{b} \leq x \leq x^{\sharp}} \sum_{l \in [L]} \sum_{i \in [I_{l}]} f^{(l)}(x; p_{i}^{(l)})$$
(SIMD abstraction)
subject to $\left[g^{(m)}(x; q_{j})\right]_{j \in [J_{m}]} + \sum_{n \in [N_{m}]} \sum_{k \in [K_{n}]} h^{(n)}(x; s_{k}^{(n)}) = 0, \quad \forall m \in [M]$

 Repeated patterns are made available by specifying the models as iterable objects

$$constraint(c, 3 * x[i+1]^3 + 2 * sin(x[i+2]) for i = 1:N-2)$$

 For each repeatitive pattern, the derivative evaluation kernel is constructed & compiled, and executed in parallel over multiple data

Second step: Solving the KKT system on the GPU

Figure: Matrix factorization using a direct solver

Linear solve: Solve the KKT system $\nabla F_{\mu}d_k = -F_k$

- Usually require factorizing ∇F_{μ} (symmetric indefinite: LBL)
- KKT system is highly ill-conditioned \rightarrow numerical pivoting

Challenge: solving the sparse linear system on the GPU

- Ill-conditioning of the KKT system
 (= iterative solvers are often not practical)
- Direct solver requires numerical pivoting for stability (= difficult to parallelize)

11 of 15

Strategy 1: LiftedKKT

Idea: equality relaxation

For a $\tau > 0$ small enough, solve the relaxed problem

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} -\tau \leq g(x) \leq \tau \\ h(x) \leq 0 \end{cases}$$

Reformulating the problem with slack variables:

$$\min_{x\in\mathbb{R}^n,s\in\mathbb{R}^{m+p}} f(x)$$
 subject to $h^ au(x)+s=0$, $s\geq 0$

with $h^{\tau}(x) = (g(x) - \tau, -g(x) - \tau, h(x))$

Condensed KKT system

The augmented KKT system is equivalent to

$$\mathbf{K}_{\tau} \mathbf{d}_{x} = -\mathbf{r}_{1} + (\nabla h^{\tau})^{\top} (\Sigma_{s} \mathbf{r}_{4} + \mathbf{r}_{2})$$

with the condensed matrix $K = W + (\nabla h^{\tau})^{\top} \Sigma_s (\nabla h^{\tau})$.

 \rightarrow the condensed KKT system can be solved without numerical pivoting!

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space intervior-point me

Strategy 2: HyKKT (aka Golub & Greif method)

Idea: augmented Lagrangian reformulation

For $\gamma >$ 0, the condensed KKT system is equivalent to

$$\begin{bmatrix} \mathbf{K}_{\gamma} & \nabla \mathbf{g}^{\top} \\ \nabla \mathbf{g} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{d}_{\mathsf{x}} \\ \mathbf{d}_{\mathsf{y}} \end{bmatrix} = - \begin{bmatrix} \mathbf{w}_1 + \gamma \nabla \mathbf{g}^{\top} \mathbf{w}_2 \\ \mathbf{w}_2 \end{bmatrix}$$

with $K_{\gamma} = K + \gamma \nabla g^{\top} \nabla g$

✓ For *γ* large-enough the matrix *K_γ* is positive definite
 Instant system using the normal equations:

$$(\nabla g) \hspace{0.1 cm} \textit{K}_{\gamma}^{-1} \hspace{0.1 cm} (\nabla g)^{ op} \textit{d}_{y} = \textit{w}_{2} - \hspace{0.1 cm} \textit{K}_{\gamma}^{-1} \hspace{0.1 cm} (\textit{w}_{1} + \gamma \nabla g^{ op} \textit{w}_{2})$$

- Keep K_{γ}^{-1} implicit by solving the normal equations *iteratively* with a conjugate gradient (CG) algorithm!
- \checkmark For large γ , CG converges in few iterations

	HSL ma27				Lifted-KKT				НуККТ			
Ν	init	AD	linsolve	total	init	AD	linsolve	total	init	AD	linsolve	total
1,000	0.1	0.0	1.7	1.8	0.5	0.0	0.4	0.9	0.4	0.0	0.2	0.6
10,000	1.6	0.2	20.6	22.4	4.8	0.0	0.9	5.8	4.9	0.0	0.8	5.7
50,000	15.4	0.9	109.1	125.5	27.9	0.5	5.4	33.8	29.7	0.1	4.6	34.5

Table: Performance comparison of MadNLP on CPU and GPU

- init: Pre-processing
- AD: automatic differentiation
- linsolve: numerical factorization
- total: total solving time

Observations

- Initial symbolic analysis is expensive
- The time per IPM iterations is reduced by x10
- More effective for large-scale problems!

Take-away

- 1. Large-scale optimization is practical on modern GPU hardware
- 2. NVIDIA cuDSS could be a game changer for your own application!

Solving the distillation problem - CPU vs GPU

Figure: Time per IPM iteration (s), CPU versus GPU. Log-log scale.