
GPU-accelerated dynamic nonlinear optimization with
ExaModels and MadNLP

François Pacaud Sungho Shin

CAS, Mines Paris - PSL & Chemical Engineering Department - MIT

CDC 2024
December, 18th 2024



Figure: Image source:
Wikipedia

Outline: dynamic nonlinear optimization

1. We present a tractable method to port the
interior-point method on GPU

2. We leverage the newly released cuDSS linear
solver for optimal performance

3. We study the performance of the method on the
classical distillation column instance

2 of 15
.



Context

How to solve a dynamic nonlinear optimization problem?

1. Discretize the continuous dynamics
2. Formulate the problem in a modeler (casadi, JuMP, AMPL,...)
3. Solve it using a nonlinear solver (Ipopt, Knitro,...)

Pioneered by the chemical engineering community:

3 of 15
.



Example: optimization of a distillation column

min
N∑

t=1

(
γ(x1,t − x̄1)2 + ρ(ut − ū)2

)
subject to, for all t = 1, · · · , N and for a fixed time-step ∆t := 10/N,

Lt = ut D , Vt = Lt + D , St = F + Lt ,

yn,t =
αxn,t

1 + (α − 1)xn,t
, ∀n ∈ {1, .., 32} ,

ẋ1,t =
1

M1
Vt (y2,t − x1,t )

ẋn,t =
1

Mn

(
Lt (xn−1,t − xn,t ) − Vt (yn,t − yn+1,t )

)
∀n ∈ {2, .., 16} ,

ẋ17,t =
1

M17

(
Fxf + Lt x16,t − St x17,t − Vt (y17,t − y18,t )

)
ẋn,t =

1
Mn

(
St (xn−1,t − xn,t ) − Vt (yn,t − yn+1,t )

)
∀n ∈ {18, .., 31} ,

ẋ32,t =
1

M32

(
St (x31,t − (F − Dt )x32,t − Vt y32,t

)
ẋn,t =

1
∆t

(
xn,t − xn,t−1

)
, ∀n ∈ {1, .., 32} ,

xn,0 = x̄n,0 , 1 ≤ ut ≤ 5 ,

4 of 15
.



We rewrite the distillation column instance as a nonlinear program

n variables, m inequality constraints, p equality constraints

Continuous nonlinear problems

min
x∈Rn

f (x) subject to

 g(x) = 0

h(x) ≤ 0

Equality cons.
Objective

Inequality cons.
The functions f , g , h are smooth, possibly nonconvex

• Useful framework to solve practical engineering problems
• Usually, we are interested only at finding a local optimum
• Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

J. Nocedal, SJ. Wright. Numerical optimization. 5 of 15
.



We rewrite the distillation column instance as a nonlinear program

n variables, m inequality constraints, p equality constraints

Continuous nonlinear problems

min
x∈Rn,s∈Rm

f (x) subject to

 g(x) = 0

h(x) + s = 0 , s ≥ 0

Equality cons.
Objective

Slack
The functions f , g , h are smooth, possibly nonconvex

• Useful framework to solve practical engineering problems
• Usually, we are interested only at finding a local optimum
• Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

J. Nocedal, SJ. Wright. Numerical optimization. 5 of 15
.



Interior-point method (IPM)
KKT stationary equations

∇f (x) + ∇g(x)⊤y + ∇h(x)⊤z = 0
z − ν = 0
g(x) = 0
h(x) + s = 0

0 ≤ s ⊥ ν ≥ 0

Complementarity cons

Rewrite the (nonsmooth) KKT system as a smooth nonlinear system

Fµ(x , s; y , z, ν ) :=


∇f (x) + ∇g(x)⊤ y + ∇h(x)⊤ z

z − ν

g(x)
h(x) + s
Sν − µe

 = 0

Homotopy, S = diag(s)

Dual variables

Primal-dual interior-point method
Solve Fµ(x , s; y , z, ν) = 0 using Newton method while driving µ → 0.

6 of 15
.



Newton method

At iteration k,
1. Compute Newton step dk as solution of the linear system

∇Fµ(w k) dk = −Fµ(w k)

2. Update the primal-dual variable w k := (x k , sk , y k , zk , νk) as

w k+1 = w k + αkdk

Figure: ∇Fµ

Augmented KKT system
After (slight) reformulation, the Newton step writes as W 0 ∇g⊤ ∇h⊤

0 Σs 0 I
∇g 0 0 0
∇h I 0 0


dx

ds
dy
dz

 = −

r1
r2
r3
r4


with W = ∇2

xx L(·), Σs = S−1diag(ν)

7 of 15
.



MadNLP: a structure exploiting interior-point solver
Winner of the 2023 COIN-OR cup!

Fork on github!
https://github.com/MadNLP/MadNLP.jl/

https://github.com/exanauts/ExaModels.jl

MadNLP
• Written in pure Julia
• Filter line-search (ala Ipopt)
• Flexible & Modular

✓ CUDA-compatible
✓ MPI-compatible
✓ Interfaced with the vectorized modeler

ExaModels.jl
✓ And now interfaced with Casadi,

thanks to Tommaso Sartor!

8 of 15
.

https://github.com/MadNLP/MadNLP.jl/
https://github.com/exanauts/ExaModels.jl


Porting IPM to the GPU

1. Fast evaluation of the derivatives using ExaModels.jl
2. Fast linear solves using NVIDIA cuDSS

Figure: Time per IPM iteration (s), CPU versus GPU. Log-log scale.

F. Pacaud, S. Shin, A. Montoison, M. Schanen, M. Anitescu. "Condensed-space methods for nonlinear programming on GPUs." 9 of 15
.



First step: factorable programming with ExaModels.jl

• Large-scale optimization problems almost always have repetitive
patterns

min
x♭≤x≤x♯

∑
l∈[L]

∑
i∈[Il ]

f (l)(x ; p(l)
i ) (SIMD abstraction)

subject to
[
g (m)(x ; qj)

]
j∈[Jm ]

+
∑

n∈[Nm ]

∑
k∈[Kn ]

h(n)(x ; s(n)
k ) = 0, ∀m ∈ [M]

• Repeated patterns are made available by specifying the models as iterable
objects

constraint(c, 3 * x[i+1]ˆ3 + 2 * sin(x[i+2]) for i = 1:N-2)

• For each repeatitive pattern, the derivative evaluation kernel is
constructed & compiled, and executed in parallel over multiple data

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods, arXiv:2307.16830.10 of 15
.



Second step: Solving the KKT system on the GPU

= ×

Figure: Matrix factorization using a direct solver

Linear solve: Solve the KKT system ∇Fµdk = −Fk

- Usually require factorizing ∇Fµ (symmetric indefinite: LBL)
- KKT system is highly ill-conditioned → numerical pivoting

Challenge: solving the sparse linear system on the GPU

• Ill-conditioning of the KKT system
(= iterative solvers are often not practical)

• Direct solver requires numerical pivoting for stability
(= difficult to parallelize)

B. Tasseff, C. Coffrin, A. Wächter, C. Laird. "Exploring benefits of linear solver parallelism on modern nonlinear optimization applications.", 2019 11 of 15
.



Strategy 1: LiftedKKT

Idea: equality relaxation
For a τ > 0 small enough, solve the relaxed problem

min
x∈Rn

f (x) subject to
{

−τ ≤ g(x) ≤ τ

h(x) ≤ 0

Reformulating the problem with slack variables:

min
x∈Rn,s∈Rm+p

f (x) subject to hτ (x) + s = 0 , s ≥ 0

with hτ (x) = (g(x) − τ, −g(x) − τ, h(x))

Condensed KKT system
The augmented KKT system is equivalent to

Kτ dx = −r1 + (∇hτ )⊤(Σs r4 + r2)

with the condensed matrix K = W + (∇hτ )⊤ Σs (∇hτ ).

→ the condensed KKT system can be solved without numerical pivoting!

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods, arXiv:2307.16830.12 of 15
.



Strategy 2: HyKKT (aka Golub & Greif method)

Idea: augmented Lagrangian reformulation
For γ > 0, the condensed KKT system is equivalent to[

Kγ ∇g⊤

∇g 0

] [
dx
dy

]
= −

[
w1 + γ∇g⊤w2

w2

]
with Kγ = K + γ∇g⊤∇g

V For γ large-enough the matrix Kγ is positive definite
Zsolve the condensed KKT system using the normal equations:

(∇g) K−1
γ (∇g)⊤dy = w2 − K−1

γ (w1 + γ∇g⊤w2)

V Keep K−1
γ implicit by solving the normal equations iteratively with a

conjugate gradient (CG) algorithm!
V For large γ, CG converges in few iterations

S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023) 13 of 15
.



How does it compare with state-of-the-art?

Table: Performance comparison of MadNLP on CPU and GPU

HSL ma27 Lifted-KKT HyKKT
N init AD linsolve total init AD linsolve total init AD linsolve total
1,000 0.1 0.0 1.7 1.8 0.5 0.0 0.4 0.9 0.4 0.0 0.2 0.6
10,000 1.6 0.2 20.6 22.4 4.8 0.0 0.9 5.8 4.9 0.0 0.8 5.7
50,000 15.4 0.9 109.1 125.5 27.9 0.5 5.4 33.8 29.7 0.1 4.6 34.5

• init: Pre-processing
• AD: automatic differentiation
• linsolve: numerical factorization
• total: total solving time

Observations
• Initial symbolic analysis is expensive
• The time per IPM iterations is reduced by x10
• More effective for large-scale problems!

14 of 15
.



Take-away

1. Large-scale optimization is practical on modern GPU hardware
2. NVIDIA cuDSS could be a game changer for your own application!

Figure: Time per IPM iteration (s), CPU versus GPU. Log-log scale.

15 of 15
.


